{"title":"在泡沫镍上制备具有核壳结构的 MgCo2O4@MnO2 纳米复合材料及其在葡萄糖测量中的应用","authors":"Jie Zhang, Jiasheng Xu","doi":"10.1007/s43153-024-00501-8","DOIUrl":null,"url":null,"abstract":"<p>The core-shell structured nanomaterial of MgCo<sub>2</sub>O<sub>4</sub>@MnO<sub>2</sub> on nickel foam (MCMNA/NF) was synthesized via a two-step hydrothermal method. It can be used as a self-supported electrode, which was constructed to an electrochemical sensor for sensitive measurement of glucose. The core-shell structure with a MnO<sub>2</sub> shell significantly enhances the material’s specific surface area and accelerates the electron transport process. Electrochemical catalytic oxidation tests were conducted on core-shell structured MCMNA/NF nanocomposite as a working electrode. The sensitivity is determined to be 9.37 μA·mM<sup>−1</sup>·cm<sup>−2</sup> and the detection limit is 0.02 mM. These test results demonstrate that the material exhibits excellent stability and selectivity as a glucose sensor. The synergistic effect of MgCo<sub>2</sub>O<sub>4</sub> and MnO<sub>2</sub> can effectively promote the application performance of the electrode materials. The MgCo<sub>2</sub>O<sub>4</sub>@MnO<sub>2</sub> glucose sensor material also exhibits exceptional resistance to interference, demonstrating no interference from Urea, Citric acid (CA), Ascorbic acid (AA), or specific inorganic salts during blood glucose detection.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":9194,"journal":{"name":"Brazilian Journal of Chemical Engineering","volume":"7 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of MgCo2O4@MnO2 nanocomposite on nickel foam with a core-shell structure and its application for glucose measurement\",\"authors\":\"Jie Zhang, Jiasheng Xu\",\"doi\":\"10.1007/s43153-024-00501-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The core-shell structured nanomaterial of MgCo<sub>2</sub>O<sub>4</sub>@MnO<sub>2</sub> on nickel foam (MCMNA/NF) was synthesized via a two-step hydrothermal method. It can be used as a self-supported electrode, which was constructed to an electrochemical sensor for sensitive measurement of glucose. The core-shell structure with a MnO<sub>2</sub> shell significantly enhances the material’s specific surface area and accelerates the electron transport process. Electrochemical catalytic oxidation tests were conducted on core-shell structured MCMNA/NF nanocomposite as a working electrode. The sensitivity is determined to be 9.37 μA·mM<sup>−1</sup>·cm<sup>−2</sup> and the detection limit is 0.02 mM. These test results demonstrate that the material exhibits excellent stability and selectivity as a glucose sensor. The synergistic effect of MgCo<sub>2</sub>O<sub>4</sub> and MnO<sub>2</sub> can effectively promote the application performance of the electrode materials. The MgCo<sub>2</sub>O<sub>4</sub>@MnO<sub>2</sub> glucose sensor material also exhibits exceptional resistance to interference, demonstrating no interference from Urea, Citric acid (CA), Ascorbic acid (AA), or specific inorganic salts during blood glucose detection.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":9194,\"journal\":{\"name\":\"Brazilian Journal of Chemical Engineering\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s43153-024-00501-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43153-024-00501-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Fabrication of MgCo2O4@MnO2 nanocomposite on nickel foam with a core-shell structure and its application for glucose measurement
The core-shell structured nanomaterial of MgCo2O4@MnO2 on nickel foam (MCMNA/NF) was synthesized via a two-step hydrothermal method. It can be used as a self-supported electrode, which was constructed to an electrochemical sensor for sensitive measurement of glucose. The core-shell structure with a MnO2 shell significantly enhances the material’s specific surface area and accelerates the electron transport process. Electrochemical catalytic oxidation tests were conducted on core-shell structured MCMNA/NF nanocomposite as a working electrode. The sensitivity is determined to be 9.37 μA·mM−1·cm−2 and the detection limit is 0.02 mM. These test results demonstrate that the material exhibits excellent stability and selectivity as a glucose sensor. The synergistic effect of MgCo2O4 and MnO2 can effectively promote the application performance of the electrode materials. The MgCo2O4@MnO2 glucose sensor material also exhibits exceptional resistance to interference, demonstrating no interference from Urea, Citric acid (CA), Ascorbic acid (AA), or specific inorganic salts during blood glucose detection.
期刊介绍:
The Brazilian Journal of Chemical Engineering is a quarterly publication of the Associação Brasileira de Engenharia Química (Brazilian Society of Chemical Engineering - ABEQ) aiming at publishing papers reporting on basic and applied research and innovation in the field of chemical engineering and related areas.