M. G. Mozerov, V. N. Karnaukhov, V. I. Kober, L. V. Zimina
{"title":"利用大地测量距离和视图对称原理,在根据给定光场对场景进行深度估计时处理遮挡问题","authors":"M. G. Mozerov, V. N. Karnaukhov, V. I. Kober, L. V. Zimina","doi":"10.1134/s1064226924700177","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">\n<b>Abstract</b>—</h3><p>The problem of depth estimation of a scene from a given light field can be reduced to the problem of classical stereo matching with the statement that matching pixels in stereo images have the same brightness values. However, this assumption is generally incorrect, given the presence of noise in the images and the different illumination of the left and right images in the stereo pair, as well as the existence of occlusions. In this regard, the luminous flux, representing 80 images pairwise epipolar to the central one, offers a number of advantages, especially in terms of occlusion handling. In this paper, we propose the principle of viewing symmetry: if a pixel of the central image lies in the occlusion zone relative to one of the peripheral images of the light field, then this pixel does not belong to the occlusion zone for an axisymmetric image of the peripheral field. Thus, it is possible to form a robust volume of discrepancy weights relative to the occlusion. As a result, the algorithm proposed in the article significantly improves the result of the scene depth reconstruction. The effectiveness of our approach is demonstrated using the main test database of the light field and comparing it with the best reconstruction algorithms in the efficiency of border recognition and in the speed of calculation.</p>","PeriodicalId":50229,"journal":{"name":"Journal of Communications Technology and Electronics","volume":"7 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Occlusion Handling in Depth Estimation of a Scene from a Given Light Field Using a Geodesic Distance and the Principle of Symmetry of the View\",\"authors\":\"M. G. Mozerov, V. N. Karnaukhov, V. I. Kober, L. V. Zimina\",\"doi\":\"10.1134/s1064226924700177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">\\n<b>Abstract</b>—</h3><p>The problem of depth estimation of a scene from a given light field can be reduced to the problem of classical stereo matching with the statement that matching pixels in stereo images have the same brightness values. However, this assumption is generally incorrect, given the presence of noise in the images and the different illumination of the left and right images in the stereo pair, as well as the existence of occlusions. In this regard, the luminous flux, representing 80 images pairwise epipolar to the central one, offers a number of advantages, especially in terms of occlusion handling. In this paper, we propose the principle of viewing symmetry: if a pixel of the central image lies in the occlusion zone relative to one of the peripheral images of the light field, then this pixel does not belong to the occlusion zone for an axisymmetric image of the peripheral field. Thus, it is possible to form a robust volume of discrepancy weights relative to the occlusion. As a result, the algorithm proposed in the article significantly improves the result of the scene depth reconstruction. The effectiveness of our approach is demonstrated using the main test database of the light field and comparing it with the best reconstruction algorithms in the efficiency of border recognition and in the speed of calculation.</p>\",\"PeriodicalId\":50229,\"journal\":{\"name\":\"Journal of Communications Technology and Electronics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Communications Technology and Electronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1134/s1064226924700177\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications Technology and Electronics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1134/s1064226924700177","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Occlusion Handling in Depth Estimation of a Scene from a Given Light Field Using a Geodesic Distance and the Principle of Symmetry of the View
Abstract—
The problem of depth estimation of a scene from a given light field can be reduced to the problem of classical stereo matching with the statement that matching pixels in stereo images have the same brightness values. However, this assumption is generally incorrect, given the presence of noise in the images and the different illumination of the left and right images in the stereo pair, as well as the existence of occlusions. In this regard, the luminous flux, representing 80 images pairwise epipolar to the central one, offers a number of advantages, especially in terms of occlusion handling. In this paper, we propose the principle of viewing symmetry: if a pixel of the central image lies in the occlusion zone relative to one of the peripheral images of the light field, then this pixel does not belong to the occlusion zone for an axisymmetric image of the peripheral field. Thus, it is possible to form a robust volume of discrepancy weights relative to the occlusion. As a result, the algorithm proposed in the article significantly improves the result of the scene depth reconstruction. The effectiveness of our approach is demonstrated using the main test database of the light field and comparing it with the best reconstruction algorithms in the efficiency of border recognition and in the speed of calculation.
期刊介绍:
Journal of Communications Technology and Electronics is a journal that publishes articles on a broad spectrum of theoretical, fundamental, and applied issues of radio engineering, communication, and electron physics. It publishes original articles from the leading scientific and research centers. The journal covers all essential branches of electromagnetics, wave propagation theory, signal processing, transmission lines, telecommunications, physics of semiconductors, and physical processes in electron devices, as well as applications in biology, medicine, microelectronics, nanoelectronics, electron and ion emission, etc.