{"title":"基于模拟的精细沉积物迁移评估,支持河流修复措施","authors":"Flóra Pomázi, Sándor Baranya","doi":"10.1002/rra.4378","DOIUrl":null,"url":null,"abstract":"A three‐dimensional coupled hydrodynamic and sediment transport model was employed to simulate the suspended sediment transport at a section of the Danube River, in Hungary. The case study is characterised by a highly complex hydromorphological system due to the nearby tributary inflow, the high number of river regulation structures as well as the several side‐arms connected to the Danube mainstem. The numerical model is set up, parameterised and validated against thorough field data of flow velocities and sediment concentrations measured at different hydrological regimes. Through the selected case study, the paper introduces (i) why 3D description is necessary at a reach‐scale analysis of complex hydromorphological systems; (ii) what sort of field data is needed to parameterise and validate a hydrodynamic and sediment transport model considering the spatial inhomogeneity of the flow and sediment features and (iii) an example for a quantitative impact assessment of side‐arm revitalisation measures on the sedimentation processes, playing a crucial role in the quality of riverine habitats.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation‐Based Assessment of Fine Sediment Transport to Support River Restoration Measures\",\"authors\":\"Flóra Pomázi, Sándor Baranya\",\"doi\":\"10.1002/rra.4378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A three‐dimensional coupled hydrodynamic and sediment transport model was employed to simulate the suspended sediment transport at a section of the Danube River, in Hungary. The case study is characterised by a highly complex hydromorphological system due to the nearby tributary inflow, the high number of river regulation structures as well as the several side‐arms connected to the Danube mainstem. The numerical model is set up, parameterised and validated against thorough field data of flow velocities and sediment concentrations measured at different hydrological regimes. Through the selected case study, the paper introduces (i) why 3D description is necessary at a reach‐scale analysis of complex hydromorphological systems; (ii) what sort of field data is needed to parameterise and validate a hydrodynamic and sediment transport model considering the spatial inhomogeneity of the flow and sediment features and (iii) an example for a quantitative impact assessment of side‐arm revitalisation measures on the sedimentation processes, playing a crucial role in the quality of riverine habitats.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/rra.4378\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rra.4378","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Simulation‐Based Assessment of Fine Sediment Transport to Support River Restoration Measures
A three‐dimensional coupled hydrodynamic and sediment transport model was employed to simulate the suspended sediment transport at a section of the Danube River, in Hungary. The case study is characterised by a highly complex hydromorphological system due to the nearby tributary inflow, the high number of river regulation structures as well as the several side‐arms connected to the Danube mainstem. The numerical model is set up, parameterised and validated against thorough field data of flow velocities and sediment concentrations measured at different hydrological regimes. Through the selected case study, the paper introduces (i) why 3D description is necessary at a reach‐scale analysis of complex hydromorphological systems; (ii) what sort of field data is needed to parameterise and validate a hydrodynamic and sediment transport model considering the spatial inhomogeneity of the flow and sediment features and (iii) an example for a quantitative impact assessment of side‐arm revitalisation measures on the sedimentation processes, playing a crucial role in the quality of riverine habitats.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.