面向 VANET 的动态匿名量子安全批量可验证认证方案

IF 4.3 2区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Consumer Electronics Pub Date : 2024-09-03 DOI:10.1109/TCE.2024.3453953
Nahida Majeed Wani;Girraj Kumar Verma;Vinay Chamola
{"title":"面向 VANET 的动态匿名量子安全批量可验证认证方案","authors":"Nahida Majeed Wani;Girraj Kumar Verma;Vinay Chamola","doi":"10.1109/TCE.2024.3453953","DOIUrl":null,"url":null,"abstract":"Integrating cutting-edge communication technology with vehicular advancement has led to Vehicular Ad-Hoc Networks (VANETs). VANET architecture facilitates the exchange of vital safety-related messages among vehicles. However, ensuring the authentication and integrity of shared messages over wireless links poses challenges. To resolve the issues, various batch-verifiable authentication schemes have been devised previously. However, existing VANET batch-verifiable authentication schemes utilize number theory-based cryptography, and therefore are vulnerable to quantum computing attacks. Additionally, storing multiple pseudonyms for anonymity incurs storage overhead on vehicles. To address these issues, this paper presents a novel lattice-based dynamic anonymous batch-verifiable authentication scheme. Being a lattice-based design, it is robust against post-quantum threats. To achieve dynamic anonymity, a fuzzy extractor design has been utilized, which removes the storage of multiple pseudonyms. The provable security has been achieved via formal analysis in the random oracle model, and an extensive performance evaluation confirms its efficiency and suitability for VANETs.","PeriodicalId":13208,"journal":{"name":"IEEE Transactions on Consumer Electronics","volume":"70 4","pages":"7112-7120"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Anonymous Quantum-Secure Batch-Verifiable Authentication Scheme for VANET\",\"authors\":\"Nahida Majeed Wani;Girraj Kumar Verma;Vinay Chamola\",\"doi\":\"10.1109/TCE.2024.3453953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integrating cutting-edge communication technology with vehicular advancement has led to Vehicular Ad-Hoc Networks (VANETs). VANET architecture facilitates the exchange of vital safety-related messages among vehicles. However, ensuring the authentication and integrity of shared messages over wireless links poses challenges. To resolve the issues, various batch-verifiable authentication schemes have been devised previously. However, existing VANET batch-verifiable authentication schemes utilize number theory-based cryptography, and therefore are vulnerable to quantum computing attacks. Additionally, storing multiple pseudonyms for anonymity incurs storage overhead on vehicles. To address these issues, this paper presents a novel lattice-based dynamic anonymous batch-verifiable authentication scheme. Being a lattice-based design, it is robust against post-quantum threats. To achieve dynamic anonymity, a fuzzy extractor design has been utilized, which removes the storage of multiple pseudonyms. The provable security has been achieved via formal analysis in the random oracle model, and an extensive performance evaluation confirms its efficiency and suitability for VANETs.\",\"PeriodicalId\":13208,\"journal\":{\"name\":\"IEEE Transactions on Consumer Electronics\",\"volume\":\"70 4\",\"pages\":\"7112-7120\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Consumer Electronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10663686/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Consumer Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10663686/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

将尖端通信技术与车辆先进技术相结合,导致了车辆自组织网络(vanet)的出现。VANET架构促进了车辆之间重要安全相关信息的交换。然而,确保无线链路上共享消息的身份验证和完整性带来了挑战。为了解决这个问题,以前已经设计了各种批量可验证的身份验证方案。然而,现有的VANET批验证认证方案使用基于数论的加密技术,因此容易受到量子计算攻击。此外,为匿名而存储多个假名会增加车辆的存储开销。为了解决这些问题,本文提出了一种新的基于格的动态匿名批验证认证方案。作为一种基于格子的设计,它对后量子威胁具有鲁棒性。为了实现动态匿名,采用了模糊提取器设计,消除了多个假名的存储。通过对随机oracle模型的形式化分析,实现了可证明的安全性,并进行了广泛的性能评估,证实了其在VANETs中的有效性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Anonymous Quantum-Secure Batch-Verifiable Authentication Scheme for VANET
Integrating cutting-edge communication technology with vehicular advancement has led to Vehicular Ad-Hoc Networks (VANETs). VANET architecture facilitates the exchange of vital safety-related messages among vehicles. However, ensuring the authentication and integrity of shared messages over wireless links poses challenges. To resolve the issues, various batch-verifiable authentication schemes have been devised previously. However, existing VANET batch-verifiable authentication schemes utilize number theory-based cryptography, and therefore are vulnerable to quantum computing attacks. Additionally, storing multiple pseudonyms for anonymity incurs storage overhead on vehicles. To address these issues, this paper presents a novel lattice-based dynamic anonymous batch-verifiable authentication scheme. Being a lattice-based design, it is robust against post-quantum threats. To achieve dynamic anonymity, a fuzzy extractor design has been utilized, which removes the storage of multiple pseudonyms. The provable security has been achieved via formal analysis in the random oracle model, and an extensive performance evaluation confirms its efficiency and suitability for VANETs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
9.30%
发文量
59
审稿时长
3.3 months
期刊介绍: The main focus for the IEEE Transactions on Consumer Electronics is the engineering and research aspects of the theory, design, construction, manufacture or end use of mass market electronics, systems, software and services for consumers.
期刊最新文献
2024 Index IEEE Transactions on Consumer Electronics Vol. 70 Table of Contents Guest Editorial Consumer-Driven Energy-Efficient WSNs Architecture for Personalization and Contextualization in E-Commerce Systems IEEE Consumer Technology Society Officers and Committee Chairs Energy-Efficient Secure Architecture For Personalization E-Commerce WSN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1