在纳米尺度上流动缓慢:重新审视摩擦的格林-久保关系

Anna T. Bui, Stephen J. Cox
{"title":"在纳米尺度上流动缓慢:重新审视摩擦的格林-久保关系","authors":"Anna T. Bui, Stephen J. Cox","doi":"arxiv-2409.07134","DOIUrl":null,"url":null,"abstract":"A central aim of statistical mechanics is to establish connections between a\nsystem's microscopic fluctuations and its macroscopic response to a\nperturbation. For non-equilibrium transport properties, this amounts to\nestablishing Green-Kubo (GK) relationships. In hydrodynamics, relating such GK\nexpressions for liquid-solid friction to macroscopic slip boundary conditions\nhas remained a long-standing problem due to two challenges: (i) The GK running\nintegral of the force autocorrelation function decays to zero rather than\nreaching a well-defined plateau value; and (ii) debates persist on whether such\na transport coefficient measures an intrinsic interfacial friction or an\neffective friction in the system. Inspired by ideas from the coarse-graining\ncommunity, we derive a GK relation for liquid-solid friction where the force\nautocorrelation is sampled with a constraint of momentum conservation in the\nliquid. Our expression does not suffer from the \"plateau problem\" and\nunambiguously measures an effective friction coefficient, in an analogous\nmanner to Stokes' law. We further establish a link between the derived friction\ncoefficient and the hydrodynamic slip length, enabling a straightforward\nassessment of continuum hydrodynamics across length scales. We find that\ncontinuum hydrodynamics describes the simulation results quantitatively for\nconfinement length all the way down to 1 nm. Our results also make clear that\nwater flow under nano-confinement is orders of magnitude slower compared to the\nmacroscopic case. Our approach amounts to a straightforward modification to the\npresent standard method of quantifying interfacial friction from molecular\nsimulations, making possible a sensible comparison between surfaces of vastly\ndifferent slippage.","PeriodicalId":501304,"journal":{"name":"arXiv - PHYS - Chemical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow is slow at the nanoscale: Revisiting the Green-Kubo relation for friction\",\"authors\":\"Anna T. Bui, Stephen J. Cox\",\"doi\":\"arxiv-2409.07134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A central aim of statistical mechanics is to establish connections between a\\nsystem's microscopic fluctuations and its macroscopic response to a\\nperturbation. For non-equilibrium transport properties, this amounts to\\nestablishing Green-Kubo (GK) relationships. In hydrodynamics, relating such GK\\nexpressions for liquid-solid friction to macroscopic slip boundary conditions\\nhas remained a long-standing problem due to two challenges: (i) The GK running\\nintegral of the force autocorrelation function decays to zero rather than\\nreaching a well-defined plateau value; and (ii) debates persist on whether such\\na transport coefficient measures an intrinsic interfacial friction or an\\neffective friction in the system. Inspired by ideas from the coarse-graining\\ncommunity, we derive a GK relation for liquid-solid friction where the force\\nautocorrelation is sampled with a constraint of momentum conservation in the\\nliquid. Our expression does not suffer from the \\\"plateau problem\\\" and\\nunambiguously measures an effective friction coefficient, in an analogous\\nmanner to Stokes' law. We further establish a link between the derived friction\\ncoefficient and the hydrodynamic slip length, enabling a straightforward\\nassessment of continuum hydrodynamics across length scales. We find that\\ncontinuum hydrodynamics describes the simulation results quantitatively for\\nconfinement length all the way down to 1 nm. Our results also make clear that\\nwater flow under nano-confinement is orders of magnitude slower compared to the\\nmacroscopic case. Our approach amounts to a straightforward modification to the\\npresent standard method of quantifying interfacial friction from molecular\\nsimulations, making possible a sensible comparison between surfaces of vastly\\ndifferent slippage.\",\"PeriodicalId\":501304,\"journal\":{\"name\":\"arXiv - PHYS - Chemical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Chemical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

统计力学的一个核心目标是在系统的微观波动与其对扰动的宏观响应之间建立联系。对于非平衡输运特性,这相当于建立格林-库伯(GK)关系。在流体力学中,将液固摩擦力的这种 GK 表达式与宏观滑移边界条件联系起来一直是一个长期存在的问题,原因有两个:(i) 力自相关函数的 GK 运行积分会衰减为零,而不是达到一个定义明确的高原值;(ii) 关于这种输运系数是测量系统中的固有界面摩擦力还是有效摩擦力的争论一直存在。受粗粒化团体思想的启发,我们推导出了液固摩擦的 GK 关系,其中力的自相关性是在液体动量守恒的约束下采样的。我们的表达式不存在 "高原问题",并以类似斯托克斯定律的方式明确测量了有效摩擦系数。我们进一步在推导出的摩擦系数和流体滑移长度之间建立了联系,从而能够对跨长度尺度的连续流体力学进行直接评估。我们发现,连续介质流体力学定量地描述了贴合长度低至 1 纳米的模拟结果。我们的结果还清楚地表明,与微观情况相比,纳米相聚情况下的水流速度要慢几个数量级。我们的方法等同于对目前通过分子模拟量化界面摩擦力的标准方法进行了直接修改,从而可以对滑动率相差悬殊的表面进行合理比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flow is slow at the nanoscale: Revisiting the Green-Kubo relation for friction
A central aim of statistical mechanics is to establish connections between a system's microscopic fluctuations and its macroscopic response to a perturbation. For non-equilibrium transport properties, this amounts to establishing Green-Kubo (GK) relationships. In hydrodynamics, relating such GK expressions for liquid-solid friction to macroscopic slip boundary conditions has remained a long-standing problem due to two challenges: (i) The GK running integral of the force autocorrelation function decays to zero rather than reaching a well-defined plateau value; and (ii) debates persist on whether such a transport coefficient measures an intrinsic interfacial friction or an effective friction in the system. Inspired by ideas from the coarse-graining community, we derive a GK relation for liquid-solid friction where the force autocorrelation is sampled with a constraint of momentum conservation in the liquid. Our expression does not suffer from the "plateau problem" and unambiguously measures an effective friction coefficient, in an analogous manner to Stokes' law. We further establish a link between the derived friction coefficient and the hydrodynamic slip length, enabling a straightforward assessment of continuum hydrodynamics across length scales. We find that continuum hydrodynamics describes the simulation results quantitatively for confinement length all the way down to 1 nm. Our results also make clear that water flow under nano-confinement is orders of magnitude slower compared to the macroscopic case. Our approach amounts to a straightforward modification to the present standard method of quantifying interfacial friction from molecular simulations, making possible a sensible comparison between surfaces of vastly different slippage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phase-cycling and double-quantum two-dimensional electronic spectroscopy using a common-path birefringent interferometer Developing Orbital-Dependent Corrections for the Non-Additive Kinetic Energy in Subsystem Density Functional Theory Thermodynamics of mixtures with strongly negative deviations from Raoult's law. XV. Permittivities and refractive indices for 1-alkanol + n-hexylamine systems at (293.15-303.15) K. Application of the Kirkwood-Fröhlich model Mutual neutralization of C$_{60}^+$ and C$_{60}^-$ ions: Excitation energies and state-selective rate coefficients All-in-one foundational models learning across quantum chemical levels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1