{"title":"通过回归量子仿射 LASSO 进行 $\\infty$-S 检验","authors":"Sylvain Sardy, Xiaoyu Ma, Hugo Gaible","doi":"arxiv-2409.04256","DOIUrl":null,"url":null,"abstract":"The nonparametric sign test dates back to the early 18th century with a data\nanalysis by John Arbuthnot. It is an alternative to Gosset's more recent\n$t$-test for consistent differences between two sets of observations. Fisher's\n$F$-test is a generalization of the $t$-test to linear regression and linear\nnull hypotheses. Only the sign test is robust to non-Gaussianity. Gutenbrunner\net al. [1993] derived a version of the sign test for linear null hypotheses in\nthe spirit of the F-test, which requires the difficult estimation of the\nsparsity function. We propose instead a new sign test called $\\infty$-S test\nvia the convex analysis of a point estimator that thresholds the estimate\ntowards the null hypothesis of the test.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The $\\\\infty$-S test via regression quantile affine LASSO\",\"authors\":\"Sylvain Sardy, Xiaoyu Ma, Hugo Gaible\",\"doi\":\"arxiv-2409.04256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nonparametric sign test dates back to the early 18th century with a data\\nanalysis by John Arbuthnot. It is an alternative to Gosset's more recent\\n$t$-test for consistent differences between two sets of observations. Fisher's\\n$F$-test is a generalization of the $t$-test to linear regression and linear\\nnull hypotheses. Only the sign test is robust to non-Gaussianity. Gutenbrunner\\net al. [1993] derived a version of the sign test for linear null hypotheses in\\nthe spirit of the F-test, which requires the difficult estimation of the\\nsparsity function. We propose instead a new sign test called $\\\\infty$-S test\\nvia the convex analysis of a point estimator that thresholds the estimate\\ntowards the null hypothesis of the test.\",\"PeriodicalId\":501425,\"journal\":{\"name\":\"arXiv - STAT - Methodology\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
非参数符号检验可追溯到 18 世纪初约翰-阿布特诺(John Arbuthnot)的数据分析。它是戈塞特(Gosset)较新的t检验的替代方法,用于检验两组观测值之间的一致性差异。费雪的$F$检验是将$t$检验推广到线性回归和线性零假设。只有符号检验对非高斯性是稳健的。Gutenbrunneret 等人[1993]根据 F 检验的精神,推导出了线性零假设的符号检验版本,该版本需要对稀疏性函数进行困难的估计。我们提出了一种新的符号检验,称为"$infty$-S 检验",它通过对点估计器的凸分析,将估计值阈值指向检验的零假设。
The $\infty$-S test via regression quantile affine LASSO
The nonparametric sign test dates back to the early 18th century with a data
analysis by John Arbuthnot. It is an alternative to Gosset's more recent
$t$-test for consistent differences between two sets of observations. Fisher's
$F$-test is a generalization of the $t$-test to linear regression and linear
null hypotheses. Only the sign test is robust to non-Gaussianity. Gutenbrunner
et al. [1993] derived a version of the sign test for linear null hypotheses in
the spirit of the F-test, which requires the difficult estimation of the
sparsity function. We propose instead a new sign test called $\infty$-S test
via the convex analysis of a point estimator that thresholds the estimate
towards the null hypothesis of the test.