{"title":"一种基于氧化锌/ZIF-67 p-n 异质结的光充电电容器,显示出更强的光电压","authors":"Yanlong Lv, Xin Sun, Changhua Mi, Jianan Gu, Yanhong Wang, Meicheng Li","doi":"10.1063/5.0219883","DOIUrl":null,"url":null,"abstract":"The photo rechargeable device (PRD) has been continuously drawing attention because it combines energy conversion and storage in one device. As for the photoelectrode of PRD, the construction of heterojunction is of crucial importance to enhance the photo performance. In this work, a two-electrode photo rechargeable capacitor based on the p–n heterojunction of ZnO/ZIF-67 is fabricated. ZIF-67 not only serves as the energy storage material but also forms the p–n heterojunction together with ZnO. A fast volatilization method was adopted for the in situ growth of ZIF-67 on ZnO nanorods to ensure sufficient mass loading and fewer interface defects. The results show a photovoltage of 0.36 V (0.2 V higher than single ZnO), a specific capacitance of 759.0 mF/g, and an overall energy conversion efficiency of 0.49%. The enhanced photovoltage is attributed to the p–n heterojunction. Moreover, a practical button cell was also fabricated, with 91% Coulombic efficiency remaining after 3000 cycles in the dark.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":"116 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A photo rechargeable capacitor based on the p–n heterojunction of ZnO/ZIF-67 showing enhanced photovoltage\",\"authors\":\"Yanlong Lv, Xin Sun, Changhua Mi, Jianan Gu, Yanhong Wang, Meicheng Li\",\"doi\":\"10.1063/5.0219883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The photo rechargeable device (PRD) has been continuously drawing attention because it combines energy conversion and storage in one device. As for the photoelectrode of PRD, the construction of heterojunction is of crucial importance to enhance the photo performance. In this work, a two-electrode photo rechargeable capacitor based on the p–n heterojunction of ZnO/ZIF-67 is fabricated. ZIF-67 not only serves as the energy storage material but also forms the p–n heterojunction together with ZnO. A fast volatilization method was adopted for the in situ growth of ZIF-67 on ZnO nanorods to ensure sufficient mass loading and fewer interface defects. The results show a photovoltage of 0.36 V (0.2 V higher than single ZnO), a specific capacitance of 759.0 mF/g, and an overall energy conversion efficiency of 0.49%. The enhanced photovoltage is attributed to the p–n heterojunction. Moreover, a practical button cell was also fabricated, with 91% Coulombic efficiency remaining after 3000 cycles in the dark.\",\"PeriodicalId\":7985,\"journal\":{\"name\":\"APL Materials\",\"volume\":\"116 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0219883\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0219883","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A photo rechargeable capacitor based on the p–n heterojunction of ZnO/ZIF-67 showing enhanced photovoltage
The photo rechargeable device (PRD) has been continuously drawing attention because it combines energy conversion and storage in one device. As for the photoelectrode of PRD, the construction of heterojunction is of crucial importance to enhance the photo performance. In this work, a two-electrode photo rechargeable capacitor based on the p–n heterojunction of ZnO/ZIF-67 is fabricated. ZIF-67 not only serves as the energy storage material but also forms the p–n heterojunction together with ZnO. A fast volatilization method was adopted for the in situ growth of ZIF-67 on ZnO nanorods to ensure sufficient mass loading and fewer interface defects. The results show a photovoltage of 0.36 V (0.2 V higher than single ZnO), a specific capacitance of 759.0 mF/g, and an overall energy conversion efficiency of 0.49%. The enhanced photovoltage is attributed to the p–n heterojunction. Moreover, a practical button cell was also fabricated, with 91% Coulombic efficiency remaining after 3000 cycles in the dark.
期刊介绍:
APL Materials features original, experimental research on significant topical issues within the field of materials science. In order to highlight research at the forefront of materials science, emphasis is given to the quality and timeliness of the work. The journal considers theory or calculation when the work is particularly timely and relevant to applications.
In addition to regular articles, the journal also publishes Special Topics, which report on cutting-edge areas in materials science, such as Perovskite Solar Cells, 2D Materials, and Beyond Lithium Ion Batteries.