探索 5G 上行链路通信的潜力:联合功率控制、用户分组和多学习灰狼优化器的协同整合

IF 3.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Reports Pub Date : 2024-09-13 DOI:10.1038/s41598-024-71751-2
Sobana Sikkanan, Chandrasekaran Kumar, Premkumar Manoharan, Sowmya Ravichandran
{"title":"探索 5G 上行链路通信的潜力:联合功率控制、用户分组和多学习灰狼优化器的协同整合","authors":"Sobana Sikkanan, Chandrasekaran Kumar, Premkumar Manoharan, Sowmya Ravichandran","doi":"10.1038/s41598-024-71751-2","DOIUrl":null,"url":null,"abstract":"<p>Non-orthogonal Multiple Access (NOMA) techniques offer potential enhancements in spectral efficiency for 5G and 6G wireless networks, facilitating broader network access. Central to realizing optimal system performance are factors like joint power control, user grouping, and decoding order. This study investigates power control and user grouping to optimize spectral efficiency in NOMA uplink systems, aiming to reduce computational difficulty. While previous research on this integrated optimization has identified several near-optimal solutions, they often come with considerable system and computational overheads. To address this, this study employed an improved Grey Wolf Optimizer (GWO), a nature-inspired metaheuristic optimization method. Although GWO is effective, it can sometimes converge prematurely and might lack diversity. To enhance its performance, this study introduces a new version of GWO, integrating Competitive Learning, Q-learning, and Greedy Selection. Competitive learning adopts agent competition, balancing exploration and exploitation and preserving diversity. Q-learning guides the search based on past experiences, enhancing adaptability and preventing redundant exploration of sub-optimal regions. Greedy selection ensures the retention of the best solutions after each iteration. The synergistic integration of these three components substantially enhances the performance of the standard GWO. This algorithm was used to manage power and user-grouping in NOMA systems, aiming to strengthen system performance while restricting computational demands. The effectiveness of the proposed algorithm was validated through numerical evaluations. Simulated outcomes revealed that when applied to the joint challenge in NOMA uplink systems, it surpasses the spectral efficiency of conventional orthogonal multiple access. Moreover, the proposed approach demonstrated superior performance compared to the standard GWO and other state-of-the-art algorithms, achieving reduced system complexity under identical constraints.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the potential of 5G uplink communication: Synergistic integration of joint power control, user grouping, and multi-learning Grey Wolf Optimizer\",\"authors\":\"Sobana Sikkanan, Chandrasekaran Kumar, Premkumar Manoharan, Sowmya Ravichandran\",\"doi\":\"10.1038/s41598-024-71751-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Non-orthogonal Multiple Access (NOMA) techniques offer potential enhancements in spectral efficiency for 5G and 6G wireless networks, facilitating broader network access. Central to realizing optimal system performance are factors like joint power control, user grouping, and decoding order. This study investigates power control and user grouping to optimize spectral efficiency in NOMA uplink systems, aiming to reduce computational difficulty. While previous research on this integrated optimization has identified several near-optimal solutions, they often come with considerable system and computational overheads. To address this, this study employed an improved Grey Wolf Optimizer (GWO), a nature-inspired metaheuristic optimization method. Although GWO is effective, it can sometimes converge prematurely and might lack diversity. To enhance its performance, this study introduces a new version of GWO, integrating Competitive Learning, Q-learning, and Greedy Selection. Competitive learning adopts agent competition, balancing exploration and exploitation and preserving diversity. Q-learning guides the search based on past experiences, enhancing adaptability and preventing redundant exploration of sub-optimal regions. Greedy selection ensures the retention of the best solutions after each iteration. The synergistic integration of these three components substantially enhances the performance of the standard GWO. This algorithm was used to manage power and user-grouping in NOMA systems, aiming to strengthen system performance while restricting computational demands. The effectiveness of the proposed algorithm was validated through numerical evaluations. Simulated outcomes revealed that when applied to the joint challenge in NOMA uplink systems, it surpasses the spectral efficiency of conventional orthogonal multiple access. Moreover, the proposed approach demonstrated superior performance compared to the standard GWO and other state-of-the-art algorithms, achieving reduced system complexity under identical constraints.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-71751-2\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-71751-2","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

非正交多址接入(NOMA)技术为 5G 和 6G 无线网络提供了提高频谱效率的潜力,从而促进更广泛的网络接入。实现最佳系统性能的核心是联合功率控制、用户分组和解码顺序等因素。本研究通过研究功率控制和用户分组来优化 NOMA 上行链路系统的频谱效率,旨在降低计算难度。虽然以往关于这种综合优化的研究已经找到了几种接近最优的解决方案,但它们往往会带来相当大的系统和计算开销。为了解决这个问题,本研究采用了一种改进的灰狼优化器(GWO),这是一种受自然启发的元启发优化方法。虽然 GWO 很有效,但有时会过早收敛,而且可能缺乏多样性。为了提高其性能,本研究引入了新版 GWO,将竞争学习、Q-learning 和贪婪选择整合在一起。竞争学习采用代理竞争的方式,在探索和利用之间取得平衡,并保持多样性。Q-learning 根据过去的经验引导搜索,增强了适应性,防止了对次优区域的重复探索。贪婪选择确保每次迭代后都能保留最佳解决方案。这三个部分的协同整合大大提高了标准 GWO 的性能。该算法被用于管理 NOMA 系统中的功率和用户分组,旨在提高系统性能的同时限制计算需求。通过数值评估验证了所提算法的有效性。模拟结果表明,当应用于 NOMA 上行链路系统中的联合挑战时,该算法的频谱效率超过了传统的正交多址接入。此外,与标准 GWO 和其他最先进的算法相比,所提出的方法表现出更优越的性能,在相同的约束条件下降低了系统复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring the potential of 5G uplink communication: Synergistic integration of joint power control, user grouping, and multi-learning Grey Wolf Optimizer

Non-orthogonal Multiple Access (NOMA) techniques offer potential enhancements in spectral efficiency for 5G and 6G wireless networks, facilitating broader network access. Central to realizing optimal system performance are factors like joint power control, user grouping, and decoding order. This study investigates power control and user grouping to optimize spectral efficiency in NOMA uplink systems, aiming to reduce computational difficulty. While previous research on this integrated optimization has identified several near-optimal solutions, they often come with considerable system and computational overheads. To address this, this study employed an improved Grey Wolf Optimizer (GWO), a nature-inspired metaheuristic optimization method. Although GWO is effective, it can sometimes converge prematurely and might lack diversity. To enhance its performance, this study introduces a new version of GWO, integrating Competitive Learning, Q-learning, and Greedy Selection. Competitive learning adopts agent competition, balancing exploration and exploitation and preserving diversity. Q-learning guides the search based on past experiences, enhancing adaptability and preventing redundant exploration of sub-optimal regions. Greedy selection ensures the retention of the best solutions after each iteration. The synergistic integration of these three components substantially enhances the performance of the standard GWO. This algorithm was used to manage power and user-grouping in NOMA systems, aiming to strengthen system performance while restricting computational demands. The effectiveness of the proposed algorithm was validated through numerical evaluations. Simulated outcomes revealed that when applied to the joint challenge in NOMA uplink systems, it surpasses the spectral efficiency of conventional orthogonal multiple access. Moreover, the proposed approach demonstrated superior performance compared to the standard GWO and other state-of-the-art algorithms, achieving reduced system complexity under identical constraints.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
期刊最新文献
Floods of Egypt's Nile in the 21st century. Hypoxic postconditioning modulates neuroprotective glial reactivity in a 3D cortical ischemic-hypoxic injury model. A study on the changes in rice composition under reduced fertilization conditions using Raman spectroscopy technology. MethylCallR : a comprehensive analysis framework for Illumina Methylation Beadchip. Acute kidney injury predicts the risk of adverse cardio renal events and all cause death in southeast Asian people with type 2 diabetes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1