立方半导体 Si、Ge、AlAs 和 AlP 中出现热传输的集体齐曼极限:散射通道和尺寸效应

Jelena Sjakste, Maxime Markov, Raja Sen, Giorgia Fugallo, Lorenzo Paulatto, Nathalie Vast
{"title":"立方半导体 Si、Ge、AlAs 和 AlP 中出现热传输的集体齐曼极限:散射通道和尺寸效应","authors":"Jelena Sjakste, Maxime Markov, Raja Sen, Giorgia Fugallo, Lorenzo Paulatto, Nathalie Vast","doi":"10.1088/2632-959x/ad70cf","DOIUrl":null,"url":null,"abstract":"In this work, we discuss the possibility of reaching the Ziman conditions for collective heat transport in cubic bulk semiconductors, such as Si, Ge, AlAs and AlP. In natural and enriched silicon and germanium, the collective heat transport limit is impossible to reach due to strong isotopic scattering. However, we show that in hyper-enriched silicon and germanium, as well as in materials with one single stable isotope like AlAs and AlP, at low temperatures, normal scattering plays an important role, making the observation of the collective heat transport possible. We further discuss the effects of sample sizes, and analyse our results for cubic materials by comparing them to bulk bismuth, in which second sound has been detected at cryogenic temperatures. We find that collective heat transport in cubic semiconductors studied in this work is expected to occur at temperatures between 10 and 20 K.","PeriodicalId":501827,"journal":{"name":"Nano Express","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Occurrence of the collective Ziman limit of heat transport in cubic semiconductors Si, Ge, AlAs and AlP: scattering channels and size effects\",\"authors\":\"Jelena Sjakste, Maxime Markov, Raja Sen, Giorgia Fugallo, Lorenzo Paulatto, Nathalie Vast\",\"doi\":\"10.1088/2632-959x/ad70cf\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we discuss the possibility of reaching the Ziman conditions for collective heat transport in cubic bulk semiconductors, such as Si, Ge, AlAs and AlP. In natural and enriched silicon and germanium, the collective heat transport limit is impossible to reach due to strong isotopic scattering. However, we show that in hyper-enriched silicon and germanium, as well as in materials with one single stable isotope like AlAs and AlP, at low temperatures, normal scattering plays an important role, making the observation of the collective heat transport possible. We further discuss the effects of sample sizes, and analyse our results for cubic materials by comparing them to bulk bismuth, in which second sound has been detected at cryogenic temperatures. We find that collective heat transport in cubic semiconductors studied in this work is expected to occur at temperatures between 10 and 20 K.\",\"PeriodicalId\":501827,\"journal\":{\"name\":\"Nano Express\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-959x/ad70cf\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-959x/ad70cf","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们讨论了在立方体半导体(如硅、锗、砷化镓和磷化镓)中达到集体热传输的齐曼条件的可能性。在天然和富集的硅和锗中,由于强烈的同位素散射,不可能达到集合热传输极限。然而,我们的研究表明,在超富集硅和锗中,以及在具有单一稳定同位素的材料(如 AlAs 和 AlP)中,在低温条件下,正常散射发挥了重要作用,使得观测集合热传输成为可能。我们进一步讨论了样品大小的影响,并将立方材料的结果与块状铋进行了比较分析,后者在低温下也能探测到二次声。我们发现,在这项工作中研究的立方半导体中,集体热传输预计会在 10 到 20 K 的温度下发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Occurrence of the collective Ziman limit of heat transport in cubic semiconductors Si, Ge, AlAs and AlP: scattering channels and size effects
In this work, we discuss the possibility of reaching the Ziman conditions for collective heat transport in cubic bulk semiconductors, such as Si, Ge, AlAs and AlP. In natural and enriched silicon and germanium, the collective heat transport limit is impossible to reach due to strong isotopic scattering. However, we show that in hyper-enriched silicon and germanium, as well as in materials with one single stable isotope like AlAs and AlP, at low temperatures, normal scattering plays an important role, making the observation of the collective heat transport possible. We further discuss the effects of sample sizes, and analyse our results for cubic materials by comparing them to bulk bismuth, in which second sound has been detected at cryogenic temperatures. We find that collective heat transport in cubic semiconductors studied in this work is expected to occur at temperatures between 10 and 20 K.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesis, characterization and magneto-structural properties of geometrical and compositional modulated nanowires A comparative study of broadband PbS quantum dots/graphene photodetectors with monolayer and bilayer graphene Occurrence of the collective Ziman limit of heat transport in cubic semiconductors Si, Ge, AlAs and AlP: scattering channels and size effects Structure and optical properties of ZnxCd1-xS and Cu:ZnxCd1-xS templated on DNA molecules Lycium ruthenicum stem extract mediated green synthesis of MnO2/Mn3(PO4)2 composite nanowire electrocatalyst for oxygen evolution reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1