使用含混合添加剂的热界面材料的中央处理器冷却效益评估

IF 1.5 4区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Mechanical Science and Technology Pub Date : 2024-09-04 DOI:10.1007/s12206-024-0846-x
Chia Cheng, Tun-Ping Teng, Chii-Rong Yang
{"title":"使用含混合添加剂的热界面材料的中央处理器冷却效益评估","authors":"Chia Cheng, Tun-Ping Teng, Chii-Rong Yang","doi":"10.1007/s12206-024-0846-x","DOIUrl":null,"url":null,"abstract":"<p>In this study, the atmospheric plasma (APP) surface modification technology was used to modify the surface of additive materials and mix them into the commercial thermal interface material (base-TIM). This technology allows for the preparation of a hybrid additives thermal interface material (HA-TIM) to improve the heat conduction performance of the base-TIM. The additives selected for HA-TIM include aluminum nitride (AlN), multi-walled carbon nanotubes (MWCNTs), and graphene flakes (GNFs) with different proportions. Additives with different sizes, shapes, and high thermal conductivity were expected to achieve a synergistic effect to produce an HA-TIM with high heat dissipation performance. After the preparation of the HA-TIM with different configuration ratios was completed, heat dissipation performance experiments would be carried out under different heating power and ambient temperature to determine the optimal configuration ratio of the HA-TIM. The results show that the HA-TIM prepared by adding 1 wt% GNFs and 1 wt% MWCNTs to the base-TIM has the best heat conduction performance. In the optimum configuration of the HA-TIM at the heating power of 50 W, 100 W, and 150 W, the heater surface temperature under the ambient temperature of 25 °C is 1.0 °C, 3.0 °C, and 4.2 °C lower than those of base-TIM, and the heater surface temperature under the ambient temperature of 30 °C is 1.1 °C, 3.2 °C, and 6.3 °C lower than those of base-TIM, respectively. Furthermore, the results show that HA-TIM has a better heat dissipation performance under high ambient temperature and heating power.</p>","PeriodicalId":16235,"journal":{"name":"Journal of Mechanical Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cooling benefit evaluation of a central processing unit using thermal interface materials with hybrid additives\",\"authors\":\"Chia Cheng, Tun-Ping Teng, Chii-Rong Yang\",\"doi\":\"10.1007/s12206-024-0846-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, the atmospheric plasma (APP) surface modification technology was used to modify the surface of additive materials and mix them into the commercial thermal interface material (base-TIM). This technology allows for the preparation of a hybrid additives thermal interface material (HA-TIM) to improve the heat conduction performance of the base-TIM. The additives selected for HA-TIM include aluminum nitride (AlN), multi-walled carbon nanotubes (MWCNTs), and graphene flakes (GNFs) with different proportions. Additives with different sizes, shapes, and high thermal conductivity were expected to achieve a synergistic effect to produce an HA-TIM with high heat dissipation performance. After the preparation of the HA-TIM with different configuration ratios was completed, heat dissipation performance experiments would be carried out under different heating power and ambient temperature to determine the optimal configuration ratio of the HA-TIM. The results show that the HA-TIM prepared by adding 1 wt% GNFs and 1 wt% MWCNTs to the base-TIM has the best heat conduction performance. In the optimum configuration of the HA-TIM at the heating power of 50 W, 100 W, and 150 W, the heater surface temperature under the ambient temperature of 25 °C is 1.0 °C, 3.0 °C, and 4.2 °C lower than those of base-TIM, and the heater surface temperature under the ambient temperature of 30 °C is 1.1 °C, 3.2 °C, and 6.3 °C lower than those of base-TIM, respectively. Furthermore, the results show that HA-TIM has a better heat dissipation performance under high ambient temperature and heating power.</p>\",\"PeriodicalId\":16235,\"journal\":{\"name\":\"Journal of Mechanical Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12206-024-0846-x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12206-024-0846-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用大气等离子体(APP)表面改性技术对添加剂材料的表面进行改性,并将其混合到商用热界面材料(base-TIM)中。这项技术可以制备混合添加剂热界面材料(HA-TIM),从而提高基础热界面材料的热传导性能。HA-TIM 选用的添加剂包括不同比例的氮化铝(AlN)、多壁碳纳米管(MWCNTs)和石墨烯薄片(GNFs)。不同尺寸、形状和高导热性的添加剂有望产生协同效应,从而制备出具有高散热性能的 HA-TIM。不同配置比的 HA-TIM 制备完成后,将在不同的加热功率和环境温度下进行散热性能实验,以确定 HA-TIM 的最佳配置比。结果表明,在基体-TIM 中添加 1 wt% GNFs 和 1 wt% MWCNTs 制备的 HA-TIM 具有最佳的热传导性能。在加热功率为 50 W、100 W 和 150 W 的 HA-TIM 最佳配置下,25 ℃ 环境温度下的加热器表面温度分别比基底-TIM 低 1.0 ℃、3.0 ℃ 和 4.2 ℃,30 ℃ 环境温度下的加热器表面温度分别比基底-TIM 低 1.1 ℃、3.2 ℃ 和 6.3 ℃。此外,研究结果表明,HA-TIM 在高环境温度和高加热功率下具有更好的散热性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cooling benefit evaluation of a central processing unit using thermal interface materials with hybrid additives

In this study, the atmospheric plasma (APP) surface modification technology was used to modify the surface of additive materials and mix them into the commercial thermal interface material (base-TIM). This technology allows for the preparation of a hybrid additives thermal interface material (HA-TIM) to improve the heat conduction performance of the base-TIM. The additives selected for HA-TIM include aluminum nitride (AlN), multi-walled carbon nanotubes (MWCNTs), and graphene flakes (GNFs) with different proportions. Additives with different sizes, shapes, and high thermal conductivity were expected to achieve a synergistic effect to produce an HA-TIM with high heat dissipation performance. After the preparation of the HA-TIM with different configuration ratios was completed, heat dissipation performance experiments would be carried out under different heating power and ambient temperature to determine the optimal configuration ratio of the HA-TIM. The results show that the HA-TIM prepared by adding 1 wt% GNFs and 1 wt% MWCNTs to the base-TIM has the best heat conduction performance. In the optimum configuration of the HA-TIM at the heating power of 50 W, 100 W, and 150 W, the heater surface temperature under the ambient temperature of 25 °C is 1.0 °C, 3.0 °C, and 4.2 °C lower than those of base-TIM, and the heater surface temperature under the ambient temperature of 30 °C is 1.1 °C, 3.2 °C, and 6.3 °C lower than those of base-TIM, respectively. Furthermore, the results show that HA-TIM has a better heat dissipation performance under high ambient temperature and heating power.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mechanical Science and Technology
Journal of Mechanical Science and Technology 工程技术-工程:机械
CiteScore
2.90
自引率
6.20%
发文量
517
审稿时长
7.7 months
期刊介绍: The aim of the Journal of Mechanical Science and Technology is to provide an international forum for the publication and dissemination of original work that contributes to the understanding of the main and related disciplines of mechanical engineering, either empirical or theoretical. The Journal covers the whole spectrum of mechanical engineering, which includes, but is not limited to, Materials and Design Engineering, Production Engineering and Fusion Technology, Dynamics, Vibration and Control, Thermal Engineering and Fluids Engineering. Manuscripts may fall into several categories including full articles, solicited reviews or commentary, and unsolicited reviews or commentary related to the core of mechanical engineering.
期刊最新文献
Numerical study of the sand distribution inside a diesel locomotive operating in wind-blown sand environment Inter electrode gap detection in electrochemical machining with electroforming planar coils Assessment of the mathematical modelling of thermophysical properties during the pyrolysis of coking coals Generative models for tabular data: A review Kriging-PSO-based shape optimization for railway wheel profile
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1