设计用于三维打印-热成型技术的患者专用腕部软垫石膏

IF 1.5 4区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Mechanical Science and Technology Pub Date : 2024-09-03 DOI:10.1007/s12206-024-2404-y
Neilson Sorimpuk, Gan Jet Hong Melvin, Wai Heng Choong, Bih-Lii Chua
{"title":"设计用于三维打印-热成型技术的患者专用腕部软垫石膏","authors":"Neilson Sorimpuk, Gan Jet Hong Melvin, Wai Heng Choong, Bih-Lii Chua","doi":"10.1007/s12206-024-2404-y","DOIUrl":null,"url":null,"abstract":"<p>This study proposed two designs of padded patient specific wrist cast as an alternative using the 3D printing thermoforming production technique. These designs were printed as a flat structure with and without hinge joints. The casts were 3D printed with polylactic acid (PLA) filament as the main structure and thermoplastic polyurethane (TPU) as the padding material. The casts were fitted to the subject’s wrist by thermoforming the printed structure. The strength of the proposed structure was analyzed using finite element analysis (FEA) during the design stage to estimate the mechanical properties of the proposed cast such as local displacement under a specific load, stress and safety factor. The thermoforming tests of the proposed designs at various temperatures were conducted experimentally to observe any crack and delamination after thermoforming. The design with hinge joint was selected based on its proper post-thermoforming fit as a functional wrist cast.</p>","PeriodicalId":16235,"journal":{"name":"Journal of Mechanical Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a padded patient specific wrist cast for 3D printing-thermoforming technique\",\"authors\":\"Neilson Sorimpuk, Gan Jet Hong Melvin, Wai Heng Choong, Bih-Lii Chua\",\"doi\":\"10.1007/s12206-024-2404-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study proposed two designs of padded patient specific wrist cast as an alternative using the 3D printing thermoforming production technique. These designs were printed as a flat structure with and without hinge joints. The casts were 3D printed with polylactic acid (PLA) filament as the main structure and thermoplastic polyurethane (TPU) as the padding material. The casts were fitted to the subject’s wrist by thermoforming the printed structure. The strength of the proposed structure was analyzed using finite element analysis (FEA) during the design stage to estimate the mechanical properties of the proposed cast such as local displacement under a specific load, stress and safety factor. The thermoforming tests of the proposed designs at various temperatures were conducted experimentally to observe any crack and delamination after thermoforming. The design with hinge joint was selected based on its proper post-thermoforming fit as a functional wrist cast.</p>\",\"PeriodicalId\":16235,\"journal\":{\"name\":\"Journal of Mechanical Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12206-024-2404-y\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12206-024-2404-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用三维打印热成型生产技术,提出了两种患者专用腕部软垫石膏的设计方案。这些设计被打印成有铰链接头和无铰链接头的平面结构。这些石膏以聚乳酸(PLA)长丝为主要结构,以热塑性聚氨酯(TPU)为填充材料。通过对打印结构进行热成型,将石膏安装到受试者的手腕上。在设计阶段,利用有限元分析(FEA)对拟议结构的强度进行了分析,以估算拟议石膏的机械性能,如特定负载下的局部位移、应力和安全系数。在不同温度下对拟议设计进行了热成型试验,以观察热成型后是否出现裂缝和分层。根据热成型后作为功能性腕部铸件的适当配合,选择了带有铰链接头的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of a padded patient specific wrist cast for 3D printing-thermoforming technique

This study proposed two designs of padded patient specific wrist cast as an alternative using the 3D printing thermoforming production technique. These designs were printed as a flat structure with and without hinge joints. The casts were 3D printed with polylactic acid (PLA) filament as the main structure and thermoplastic polyurethane (TPU) as the padding material. The casts were fitted to the subject’s wrist by thermoforming the printed structure. The strength of the proposed structure was analyzed using finite element analysis (FEA) during the design stage to estimate the mechanical properties of the proposed cast such as local displacement under a specific load, stress and safety factor. The thermoforming tests of the proposed designs at various temperatures were conducted experimentally to observe any crack and delamination after thermoforming. The design with hinge joint was selected based on its proper post-thermoforming fit as a functional wrist cast.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mechanical Science and Technology
Journal of Mechanical Science and Technology 工程技术-工程:机械
CiteScore
2.90
自引率
6.20%
发文量
517
审稿时长
7.7 months
期刊介绍: The aim of the Journal of Mechanical Science and Technology is to provide an international forum for the publication and dissemination of original work that contributes to the understanding of the main and related disciplines of mechanical engineering, either empirical or theoretical. The Journal covers the whole spectrum of mechanical engineering, which includes, but is not limited to, Materials and Design Engineering, Production Engineering and Fusion Technology, Dynamics, Vibration and Control, Thermal Engineering and Fluids Engineering. Manuscripts may fall into several categories including full articles, solicited reviews or commentary, and unsolicited reviews or commentary related to the core of mechanical engineering.
期刊最新文献
Numerical study of the sand distribution inside a diesel locomotive operating in wind-blown sand environment Inter electrode gap detection in electrochemical machining with electroforming planar coils Assessment of the mathematical modelling of thermophysical properties during the pyrolysis of coking coals Generative models for tabular data: A review Kriging-PSO-based shape optimization for railway wheel profile
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1