R. Venkatesh, N. Parthipan, Pranav Kumar, S. Muthukumarasamy, Ismail Hossain, V. Mohanavel, Majed A. Alotaibi, A. H. Seikh, Md Abul Kalam
{"title":"以 E 玻璃纤维为特征的混合铝合金复合材料:金相、机械和断裂失效研究","authors":"R. Venkatesh, N. Parthipan, Pranav Kumar, S. Muthukumarasamy, Ismail Hossain, V. Mohanavel, Majed A. Alotaibi, A. H. Seikh, Md Abul Kalam","doi":"10.1007/s12206-024-0821-6","DOIUrl":null,"url":null,"abstract":"<p>The motto of research is to attempt to enrich the mechanical and fracture resistance quality of AA5052 alloy composite composed by the adaptations of 0, 3, 6, and 9 weight percentages (wt%) of silicon carbide (SiC) nanoparticle and 5 wt% of chopped E-glass fiber through vacuum-assisted stir processing under 500 rpm. The metallography analysis of composite samples is analyzed and spots the good interfacial with void-less structure. The composite’s mechanical and fracture qualities enriched through the inclusion of SiC (9 wt%) / E-glass fiber (5 wt%) in AA5052 alloy composite attained the highest tensile strength, better hardness, improved elongation percentage and excellent fracture toughness, which is enhanced by 25.5, 33.8, 22, and 15 % comparable to the value of monolithic AA5052 alloy cast. The E-glass configured hybrid AA5052/SiC alloy composite is suggested for automotive body structural applications.</p>","PeriodicalId":16235,"journal":{"name":"Journal of Mechanical Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"E-glass fiber featured hybrid aluminium alloy composite: Metallographic, mechanical and fracture failure study\",\"authors\":\"R. Venkatesh, N. Parthipan, Pranav Kumar, S. Muthukumarasamy, Ismail Hossain, V. Mohanavel, Majed A. Alotaibi, A. H. Seikh, Md Abul Kalam\",\"doi\":\"10.1007/s12206-024-0821-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The motto of research is to attempt to enrich the mechanical and fracture resistance quality of AA5052 alloy composite composed by the adaptations of 0, 3, 6, and 9 weight percentages (wt%) of silicon carbide (SiC) nanoparticle and 5 wt% of chopped E-glass fiber through vacuum-assisted stir processing under 500 rpm. The metallography analysis of composite samples is analyzed and spots the good interfacial with void-less structure. The composite’s mechanical and fracture qualities enriched through the inclusion of SiC (9 wt%) / E-glass fiber (5 wt%) in AA5052 alloy composite attained the highest tensile strength, better hardness, improved elongation percentage and excellent fracture toughness, which is enhanced by 25.5, 33.8, 22, and 15 % comparable to the value of monolithic AA5052 alloy cast. The E-glass configured hybrid AA5052/SiC alloy composite is suggested for automotive body structural applications.</p>\",\"PeriodicalId\":16235,\"journal\":{\"name\":\"Journal of Mechanical Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12206-024-0821-6\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12206-024-0821-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
E-glass fiber featured hybrid aluminium alloy composite: Metallographic, mechanical and fracture failure study
The motto of research is to attempt to enrich the mechanical and fracture resistance quality of AA5052 alloy composite composed by the adaptations of 0, 3, 6, and 9 weight percentages (wt%) of silicon carbide (SiC) nanoparticle and 5 wt% of chopped E-glass fiber through vacuum-assisted stir processing under 500 rpm. The metallography analysis of composite samples is analyzed and spots the good interfacial with void-less structure. The composite’s mechanical and fracture qualities enriched through the inclusion of SiC (9 wt%) / E-glass fiber (5 wt%) in AA5052 alloy composite attained the highest tensile strength, better hardness, improved elongation percentage and excellent fracture toughness, which is enhanced by 25.5, 33.8, 22, and 15 % comparable to the value of monolithic AA5052 alloy cast. The E-glass configured hybrid AA5052/SiC alloy composite is suggested for automotive body structural applications.
期刊介绍:
The aim of the Journal of Mechanical Science and Technology is to provide an international forum for the publication and dissemination of original work that contributes to the understanding of the main and related disciplines of mechanical engineering, either empirical or theoretical. The Journal covers the whole spectrum of mechanical engineering, which includes, but is not limited to, Materials and Design Engineering, Production Engineering and Fusion Technology, Dynamics, Vibration and Control, Thermal Engineering and Fluids Engineering.
Manuscripts may fall into several categories including full articles, solicited reviews or commentary, and unsolicited reviews or commentary related to the core of mechanical engineering.