珊瑚虫颗粒基复合材料的物理力学、摩擦学和优化情况的实验评估

IF 2.9 4区 化学 Q2 POLYMER SCIENCE Polymer International Pub Date : 2024-08-29 DOI:10.1002/pi.6695
Vijay Kumar Mahakur, Santosh Kumar, Sumit Bhowmik, Promod Kumar Patowari
{"title":"珊瑚虫颗粒基复合材料的物理力学、摩擦学和优化情况的实验评估","authors":"Vijay Kumar Mahakur, Santosh Kumar, Sumit Bhowmik, Promod Kumar Patowari","doi":"10.1002/pi.6695","DOIUrl":null,"url":null,"abstract":"Researchers are diligently striving towards generating sustainable successors for man‐made fibers. Naturally derived fibers/fillers have gained much attention these days due to their use in the development of renewable and biodegradable components. This research emphasizes the physical, mechanical and tribological aspects of silanized <jats:italic>Corchorus olitorius</jats:italic> particle‐based thermoset composites. With the help of a contact lay‐up technique, varied weight fractions (0, 2.5, 5, 7.5, 10 and 12.5%)‐based composites as per ASTM standards were generated. The experimental results reveal that silanization promotes the interfacial relationship between particles of <jats:italic>Corchorus olitorius</jats:italic> and the matrix and also the established silanized particle‐based composites demonstrated a potential modest density feature. The minimal weight fraction‐based composite exhibited the best mechanical and wear‐resistant features. Furthermore, the interval‐valued intuitionistic fuzzy Schweizer–Sklar power weighted average approach has been developed as a distinctive structure for obtaining the most effective composite material for any further industrial applications. From this optimization strategy, the specimen with 5 wt% particle content is found to be the best, followed by the specimen with 7.5 wt% particle content. This work highlights the crucial function of surface modification techniques, especially silanization, in enhancing the effectiveness and stability of composites that include <jats:italic>Corchorus olitorius</jats:italic> particles. © 2024 Society of Chemical Industry.","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental evaluation of physicomechanical, tribological and optimality circumstances for Corchorus olitorius particle‐based composites\",\"authors\":\"Vijay Kumar Mahakur, Santosh Kumar, Sumit Bhowmik, Promod Kumar Patowari\",\"doi\":\"10.1002/pi.6695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Researchers are diligently striving towards generating sustainable successors for man‐made fibers. Naturally derived fibers/fillers have gained much attention these days due to their use in the development of renewable and biodegradable components. This research emphasizes the physical, mechanical and tribological aspects of silanized <jats:italic>Corchorus olitorius</jats:italic> particle‐based thermoset composites. With the help of a contact lay‐up technique, varied weight fractions (0, 2.5, 5, 7.5, 10 and 12.5%)‐based composites as per ASTM standards were generated. The experimental results reveal that silanization promotes the interfacial relationship between particles of <jats:italic>Corchorus olitorius</jats:italic> and the matrix and also the established silanized particle‐based composites demonstrated a potential modest density feature. The minimal weight fraction‐based composite exhibited the best mechanical and wear‐resistant features. Furthermore, the interval‐valued intuitionistic fuzzy Schweizer–Sklar power weighted average approach has been developed as a distinctive structure for obtaining the most effective composite material for any further industrial applications. From this optimization strategy, the specimen with 5 wt% particle content is found to be the best, followed by the specimen with 7.5 wt% particle content. This work highlights the crucial function of surface modification techniques, especially silanization, in enhancing the effectiveness and stability of composites that include <jats:italic>Corchorus olitorius</jats:italic> particles. © 2024 Society of Chemical Industry.\",\"PeriodicalId\":20404,\"journal\":{\"name\":\"Polymer International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer International\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/pi.6695\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer International","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/pi.6695","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

研究人员正孜孜不倦地努力为人造纤维开发可持续的替代品。天然衍生纤维/填料因其可用于开发可再生和可生物降解部件而备受关注。这项研究强调了硅烷化欧鼠李颗粒热固性复合材料的物理、机械和摩擦学方面。在接触铺层技术的帮助下,按照 ASTM 标准生成了不同重量分数(0、2.5、5、7.5、10 和 12.5%)的复合材料。实验结果表明,硅烷化促进了欧石珊瑚颗粒与基体之间的界面关系,硅烷化颗粒基复合材料还显示出潜在的适度密度特征。基于最小重量分数的复合材料表现出最佳的机械性能和耐磨性能。此外,还开发了区间值直观模糊 Schweizer-Sklar 功率加权平均法,作为一种独特的结构,用于获得最有效的复合材料,以进一步应用于工业领域。根据这一优化策略,发现颗粒含量为 5 wt% 的试样效果最好,其次是颗粒含量为 7.5 wt% 的试样。这项工作凸显了表面改性技术,尤其是硅烷化技术,在提高含有欧石珊瑚颗粒的复合材料的有效性和稳定性方面的重要作用。© 2024 化学工业协会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental evaluation of physicomechanical, tribological and optimality circumstances for Corchorus olitorius particle‐based composites
Researchers are diligently striving towards generating sustainable successors for man‐made fibers. Naturally derived fibers/fillers have gained much attention these days due to their use in the development of renewable and biodegradable components. This research emphasizes the physical, mechanical and tribological aspects of silanized Corchorus olitorius particle‐based thermoset composites. With the help of a contact lay‐up technique, varied weight fractions (0, 2.5, 5, 7.5, 10 and 12.5%)‐based composites as per ASTM standards were generated. The experimental results reveal that silanization promotes the interfacial relationship between particles of Corchorus olitorius and the matrix and also the established silanized particle‐based composites demonstrated a potential modest density feature. The minimal weight fraction‐based composite exhibited the best mechanical and wear‐resistant features. Furthermore, the interval‐valued intuitionistic fuzzy Schweizer–Sklar power weighted average approach has been developed as a distinctive structure for obtaining the most effective composite material for any further industrial applications. From this optimization strategy, the specimen with 5 wt% particle content is found to be the best, followed by the specimen with 7.5 wt% particle content. This work highlights the crucial function of surface modification techniques, especially silanization, in enhancing the effectiveness and stability of composites that include Corchorus olitorius particles. © 2024 Society of Chemical Industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer International
Polymer International 化学-高分子科学
CiteScore
7.10
自引率
3.10%
发文量
135
审稿时长
4.3 months
期刊介绍: Polymer International (PI) publishes the most significant advances in macromolecular science and technology. PI especially welcomes research papers that address applications that fall within the broad headings Energy and Electronics, Biomedical Studies, and Water, Environment and Sustainability. The Journal’s editors have identified these as the major challenges facing polymer scientists worldwide. The Journal also publishes invited Review, Mini-review and Perspective papers that address these challenges and others that may be of growing or future relevance to polymer scientists and engineers.
期刊最新文献
Issue Information Natural polymers for emerging technological applications: cellulose, lignin, shellac and silk Investigate Performance of ATGF nanocomposite based on guar gum polymer for adsorption of Congo Red dye and alpha lipoic acid drug from wastewater: study kinetics and simulation Issue Information Exploring biofiber properties and their influence on biocomposite tensile properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1