在中硼酸盐工程层状多孔钯/SSZ-13 沸石上催化甲烷减排

IF 7.4 Q1 ENGINEERING, ENVIRONMENTAL ACS ES&T engineering Pub Date : 2024-08-30 DOI:10.1021/acsestengg.4c00347
Gaozhou Liang, Anqi Guo, Wuwan Xiong, Dongdong Chen, Ulrich Simon, Daiqi Ye, Haibao Huang, Peirong Chen
{"title":"在中硼酸盐工程层状多孔钯/SSZ-13 沸石上催化甲烷减排","authors":"Gaozhou Liang, Anqi Guo, Wuwan Xiong, Dongdong Chen, Ulrich Simon, Daiqi Ye, Haibao Huang, Peirong Chen","doi":"10.1021/acsestengg.4c00347","DOIUrl":null,"url":null,"abstract":"Palladium-zeolites are active catalysts for abating methane (CH<sub>4</sub>), the second largest greenhouse gas contributing to climate change, via catalytic combustion. Yet, it remains challenging to improve the activity of Pd-zeolites in CH<sub>4</sub> combustion, in particular under humid conditions. Here, using small-pore SSZ-13 zeolite as a showcase, we demonstrate mesoporosity engineering as an effective approach to boost the CH<sub>4</sub> combustion performance of Pd-zeolites. A newly designed gemini quaternary ammonium surfactant, namely C<sub>18–4</sub>N<sub>2</sub>MP, was fabricated using inexpensive reagents and employed as a mesoporogen in the hydrothermal synthesis of hierarchically micro–meso–macro–porous SSZ-13 product. High-dispersion Pd catalysts were achieved by using the hierarchically porous SSZ-13 zeolites as supports. Physicochemical characterization and reaction kinetics disclosed that rational mesoporosity engineering of the hierarchically porous SSZ-13, simply by optimizing C<sub>18–4</sub>N<sub>2</sub>MP addition in the precursor gel prior to hydrothermal crystallization, favored the formation of highly dispersed PdO<i><sub>x</sub></i> active phase and, in turn, the CH<sub>4</sub> combustion without noticeable accumulation of carbonaceous intermediates on the surface. Additionally, mesoporosity-optimized Pd/SSZ-13 displayed improved durability and outstanding moisture resistance during CH<sub>4</sub> combustion. This study sheds new light on the fabrication of high-performance Pd-zeolite catalysts for CH<sub>4</sub> emission abatement by facile engineering of zeolite mesoporosity.","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catalytic Methane Mitigation Over Mesoporosity-Engineered Hierarchically Porous Pd/SSZ-13 Zeolites\",\"authors\":\"Gaozhou Liang, Anqi Guo, Wuwan Xiong, Dongdong Chen, Ulrich Simon, Daiqi Ye, Haibao Huang, Peirong Chen\",\"doi\":\"10.1021/acsestengg.4c00347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Palladium-zeolites are active catalysts for abating methane (CH<sub>4</sub>), the second largest greenhouse gas contributing to climate change, via catalytic combustion. Yet, it remains challenging to improve the activity of Pd-zeolites in CH<sub>4</sub> combustion, in particular under humid conditions. Here, using small-pore SSZ-13 zeolite as a showcase, we demonstrate mesoporosity engineering as an effective approach to boost the CH<sub>4</sub> combustion performance of Pd-zeolites. A newly designed gemini quaternary ammonium surfactant, namely C<sub>18–4</sub>N<sub>2</sub>MP, was fabricated using inexpensive reagents and employed as a mesoporogen in the hydrothermal synthesis of hierarchically micro–meso–macro–porous SSZ-13 product. High-dispersion Pd catalysts were achieved by using the hierarchically porous SSZ-13 zeolites as supports. Physicochemical characterization and reaction kinetics disclosed that rational mesoporosity engineering of the hierarchically porous SSZ-13, simply by optimizing C<sub>18–4</sub>N<sub>2</sub>MP addition in the precursor gel prior to hydrothermal crystallization, favored the formation of highly dispersed PdO<i><sub>x</sub></i> active phase and, in turn, the CH<sub>4</sub> combustion without noticeable accumulation of carbonaceous intermediates on the surface. Additionally, mesoporosity-optimized Pd/SSZ-13 displayed improved durability and outstanding moisture resistance during CH<sub>4</sub> combustion. This study sheds new light on the fabrication of high-performance Pd-zeolite catalysts for CH<sub>4</sub> emission abatement by facile engineering of zeolite mesoporosity.\",\"PeriodicalId\":7008,\"journal\":{\"name\":\"ACS ES&T engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS ES&T engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsestengg.4c00347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsestengg.4c00347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

钯沸石是一种活性催化剂,可通过催化燃烧减少导致气候变化的第二大温室气体甲烷(CH4)。然而,提高钯沸石在燃烧甲烷(CH4)过程中的活性,尤其是在潮湿条件下的活性,仍然是一项挑战。在此,我们以小孔 SSZ-13 沸石为例,展示了介孔工程是提高钯沸石甲烷燃烧性能的有效方法。我们使用廉价试剂制备了一种新设计的双子季铵盐表面活性剂(即 C18-4N2MP),并将其用作水热合成分层微介孔 SSZ-13 产品的介孔原。以分层多孔 SSZ-13 沸石为载体实现了高分散 Pd 催化剂。理化表征和反应动力学表明,在水热结晶之前,通过优化 C18-4N2MP 在前驱体凝胶中的添加量,对分层多孔 SSZ-13 进行合理的介孔工程,有利于形成高度分散的 PdOx 活性相,进而促进 CH4 燃烧,而不会在表面积累明显的碳质中间产物。此外,经过介孔优化的 Pd/SSZ-13 在燃烧 CH4 的过程中显示出更好的耐久性和出色的防潮性能。本研究为通过沸石介孔度的简便工程设计来制造用于减少 CH4 排放的高性能 Pd- 沸石催化剂提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Catalytic Methane Mitigation Over Mesoporosity-Engineered Hierarchically Porous Pd/SSZ-13 Zeolites
Palladium-zeolites are active catalysts for abating methane (CH4), the second largest greenhouse gas contributing to climate change, via catalytic combustion. Yet, it remains challenging to improve the activity of Pd-zeolites in CH4 combustion, in particular under humid conditions. Here, using small-pore SSZ-13 zeolite as a showcase, we demonstrate mesoporosity engineering as an effective approach to boost the CH4 combustion performance of Pd-zeolites. A newly designed gemini quaternary ammonium surfactant, namely C18–4N2MP, was fabricated using inexpensive reagents and employed as a mesoporogen in the hydrothermal synthesis of hierarchically micro–meso–macro–porous SSZ-13 product. High-dispersion Pd catalysts were achieved by using the hierarchically porous SSZ-13 zeolites as supports. Physicochemical characterization and reaction kinetics disclosed that rational mesoporosity engineering of the hierarchically porous SSZ-13, simply by optimizing C18–4N2MP addition in the precursor gel prior to hydrothermal crystallization, favored the formation of highly dispersed PdOx active phase and, in turn, the CH4 combustion without noticeable accumulation of carbonaceous intermediates on the surface. Additionally, mesoporosity-optimized Pd/SSZ-13 displayed improved durability and outstanding moisture resistance during CH4 combustion. This study sheds new light on the fabrication of high-performance Pd-zeolite catalysts for CH4 emission abatement by facile engineering of zeolite mesoporosity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS ES&T engineering
ACS ES&T engineering ENGINEERING, ENVIRONMENTAL-
CiteScore
8.50
自引率
0.00%
发文量
0
期刊介绍: ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources. The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope. Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Kinetics of Fluorapatite Precipitation in Fluoride-Contaminated Water Porous Iron Electrodes Reduce Energy Consumption During Electrocoagulation of a Virus Surrogate: Insights into Performance Enhancements Using Three-Dimensional Neutron Computed Tomography Porous Iron Electrodes Reduce Energy Consumption During Electrocoagulation of a Virus Surrogate: Insights into Performance Enhancements Using Three-Dimensional Neutron Computed Tomography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1