Ellen Parkes, Assala Al Samad, Giacomo Mazzotti, Charlie Newell, Brian Ng, Amy Radford, Michael J Booth
{"title":"磁激活球形核酸以远程控制合成细胞","authors":"Ellen Parkes, Assala Al Samad, Giacomo Mazzotti, Charlie Newell, Brian Ng, Amy Radford, Michael J Booth","doi":"10.1101/2024.08.21.608917","DOIUrl":null,"url":null,"abstract":"The advancement of synthetic cells as drug delivery devices hinges on the development of targeting strategies, in particular the controlled synthesis of biomolecules in-situ using a deeply penetrative stimulus. To address this, we have designed spherical nucleic acids comprising DNA promoter sequences decorating magnetic nanoparticle cores. By harnessing the heat dissipated from magnetic hyperthermia (a clinically-approved anticancer therapy) we tightly controlled cell-free protein synthesis. We then deployed a tissue phantom that is impenetrable by current activation methods to demonstrate the potential of this technology for the remote control of synthetic cells using deeply tissue-penetrating magnetic fields. This paves the way for targeting and controlling the in-situ synthesis of biomolecules deep within the body.","PeriodicalId":501408,"journal":{"name":"bioRxiv - Synthetic Biology","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic Activation of Spherical Nucleic Acids for the Remote Control of Synthetic Cells\",\"authors\":\"Ellen Parkes, Assala Al Samad, Giacomo Mazzotti, Charlie Newell, Brian Ng, Amy Radford, Michael J Booth\",\"doi\":\"10.1101/2024.08.21.608917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advancement of synthetic cells as drug delivery devices hinges on the development of targeting strategies, in particular the controlled synthesis of biomolecules in-situ using a deeply penetrative stimulus. To address this, we have designed spherical nucleic acids comprising DNA promoter sequences decorating magnetic nanoparticle cores. By harnessing the heat dissipated from magnetic hyperthermia (a clinically-approved anticancer therapy) we tightly controlled cell-free protein synthesis. We then deployed a tissue phantom that is impenetrable by current activation methods to demonstrate the potential of this technology for the remote control of synthetic cells using deeply tissue-penetrating magnetic fields. This paves the way for targeting and controlling the in-situ synthesis of biomolecules deep within the body.\",\"PeriodicalId\":501408,\"journal\":{\"name\":\"bioRxiv - Synthetic Biology\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Synthetic Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.21.608917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Synthetic Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.21.608917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
合成细胞作为药物输送设备的发展取决于靶向策略的开发,特别是利用深度穿透性刺激在原位控制合成生物分子。为此,我们设计了由 DNA 启动子序列组成的球形核酸,并以磁性纳米粒子为核心进行装饰。通过利用磁热效应(一种临床批准的抗癌疗法)产生的热量,我们严格控制了无细胞蛋白质合成。然后,我们部署了一个目前的活化方法无法穿透的组织模型,展示了这项技术利用深度穿透组织的磁场远程控制合成细胞的潜力。这为瞄准和控制体内深层生物分子的原位合成铺平了道路。
Magnetic Activation of Spherical Nucleic Acids for the Remote Control of Synthetic Cells
The advancement of synthetic cells as drug delivery devices hinges on the development of targeting strategies, in particular the controlled synthesis of biomolecules in-situ using a deeply penetrative stimulus. To address this, we have designed spherical nucleic acids comprising DNA promoter sequences decorating magnetic nanoparticle cores. By harnessing the heat dissipated from magnetic hyperthermia (a clinically-approved anticancer therapy) we tightly controlled cell-free protein synthesis. We then deployed a tissue phantom that is impenetrable by current activation methods to demonstrate the potential of this technology for the remote control of synthetic cells using deeply tissue-penetrating magnetic fields. This paves the way for targeting and controlling the in-situ synthesis of biomolecules deep within the body.