制备大麦颗粒结合型直链淀粉合成酶 Ia 的多克隆抗体及其在鉴定相互作用蛋白中的应用

Agronomy Pub Date : 2024-09-09 DOI:10.3390/agronomy14092058
Qiyan Zhou, Boai Xi, Noman Shoaib, Yan Gao, Zhenbin Cheng, Rizwan Ali Kumbhar, Zongyun Feng, Yajie Liu, Hui Zhao, Guowu Yu
{"title":"制备大麦颗粒结合型直链淀粉合成酶 Ia 的多克隆抗体及其在鉴定相互作用蛋白中的应用","authors":"Qiyan Zhou, Boai Xi, Noman Shoaib, Yan Gao, Zhenbin Cheng, Rizwan Ali Kumbhar, Zongyun Feng, Yajie Liu, Hui Zhao, Guowu Yu","doi":"10.3390/agronomy14092058","DOIUrl":null,"url":null,"abstract":"The production of amylose is facilitated by granule-bound starch synthase (GBSS). Despite its importance, the specific protein interactions involving barley grain-bound starch synthase Ia (HvGBSSIa) remain poorly understood. To elucidate this, we engineered a pET-32a-HvGBSSIa prokaryotic expression vector for specific expression in E. coli Rosetta cells. A rabbit anti-HvGBSSIa polyclonal antibody was generated and employed to enrich HvGBSSIa-binding proteins from barley grains through immunoprecipitation. The isolated complexes were then resolved through SDS-PAGE, and the constituent proteins were identified using mass spectrometry coupled with database searches. Our results confirmed the successful preparation of a highly specific polyclonal antibody against HvGBSSI. Furthermore, differential expression of HvGBSSIa was assessed across various barley tissues and developmental stages of the grain, revealing peak expression at 25 days post-flowering. Proteins interacting with HvGBSSIa, including sucrose synthase and starch branching enzyme, were identified through co-immunoprecipitation. This study lays the groundwork for further detailed analyses of the HvGBSSIa protein complex in barley.","PeriodicalId":7601,"journal":{"name":"Agronomy","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of Polyclonal Antibodies to Barley Granule-Bound Amylopectin Synthase Ia and Their Application in the Characterization of Interacting Proteins\",\"authors\":\"Qiyan Zhou, Boai Xi, Noman Shoaib, Yan Gao, Zhenbin Cheng, Rizwan Ali Kumbhar, Zongyun Feng, Yajie Liu, Hui Zhao, Guowu Yu\",\"doi\":\"10.3390/agronomy14092058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The production of amylose is facilitated by granule-bound starch synthase (GBSS). Despite its importance, the specific protein interactions involving barley grain-bound starch synthase Ia (HvGBSSIa) remain poorly understood. To elucidate this, we engineered a pET-32a-HvGBSSIa prokaryotic expression vector for specific expression in E. coli Rosetta cells. A rabbit anti-HvGBSSIa polyclonal antibody was generated and employed to enrich HvGBSSIa-binding proteins from barley grains through immunoprecipitation. The isolated complexes were then resolved through SDS-PAGE, and the constituent proteins were identified using mass spectrometry coupled with database searches. Our results confirmed the successful preparation of a highly specific polyclonal antibody against HvGBSSI. Furthermore, differential expression of HvGBSSIa was assessed across various barley tissues and developmental stages of the grain, revealing peak expression at 25 days post-flowering. Proteins interacting with HvGBSSIa, including sucrose synthase and starch branching enzyme, were identified through co-immunoprecipitation. This study lays the groundwork for further detailed analyses of the HvGBSSIa protein complex in barley.\",\"PeriodicalId\":7601,\"journal\":{\"name\":\"Agronomy\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/agronomy14092058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/agronomy14092058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

谷粒结合淀粉合成酶(GBSS)促进了直链淀粉的产生。尽管大麦谷粒结合淀粉合成酶 Ia(HvGBSSIa)非常重要,但人们对其参与的特定蛋白质相互作用仍然知之甚少。为了阐明这一点,我们设计了一个 pET-32a-HvGBSSIa 原核表达载体,用于在大肠杆菌 Rosetta 细胞中特异性表达。我们生成了兔抗 HvGBSSIa 多克隆抗体,并利用该抗体通过免疫沉淀法从大麦粒中富集 HvGBSSIa 结合蛋白。然后通过 SDS-PAGE 对分离出的复合物进行解析,并利用质谱法和数据库搜索对组成蛋白质进行鉴定。我们的研究结果证实成功制备了针对 HvGBSSI 的高特异性多克隆抗体。此外,我们还评估了 HvGBSSIa 在大麦不同组织和谷粒不同发育阶段的表达差异,结果表明其在开花后 25 天达到表达峰值。通过共免疫沉淀,确定了与 HvGBSSIa 相互作用的蛋白质,包括蔗糖合成酶和淀粉分支酶。这项研究为进一步详细分析大麦中的 HvGBSSIa 蛋白复合物奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparation of Polyclonal Antibodies to Barley Granule-Bound Amylopectin Synthase Ia and Their Application in the Characterization of Interacting Proteins
The production of amylose is facilitated by granule-bound starch synthase (GBSS). Despite its importance, the specific protein interactions involving barley grain-bound starch synthase Ia (HvGBSSIa) remain poorly understood. To elucidate this, we engineered a pET-32a-HvGBSSIa prokaryotic expression vector for specific expression in E. coli Rosetta cells. A rabbit anti-HvGBSSIa polyclonal antibody was generated and employed to enrich HvGBSSIa-binding proteins from barley grains through immunoprecipitation. The isolated complexes were then resolved through SDS-PAGE, and the constituent proteins were identified using mass spectrometry coupled with database searches. Our results confirmed the successful preparation of a highly specific polyclonal antibody against HvGBSSI. Furthermore, differential expression of HvGBSSIa was assessed across various barley tissues and developmental stages of the grain, revealing peak expression at 25 days post-flowering. Proteins interacting with HvGBSSIa, including sucrose synthase and starch branching enzyme, were identified through co-immunoprecipitation. This study lays the groundwork for further detailed analyses of the HvGBSSIa protein complex in barley.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Influence of Sowing Date on the Primary Yield Components of Maize Algorithm for Locating Apical Meristematic Tissue of Weeds Based on YOLO Instance Segmentation Unlocking Cassava Brown Streak Disease Resistance in Cassava: Insights from Genetic Variability and Combining Ability Effects of Spray Adjuvants on Droplet Deposition Characteristics in Litchi Trees under UAV Spraying Operations Synthesis, Herbicidal Activity, and Molecular Mode of Action Evaluation of Novel Quinazolinone—Phenoxypropionate Hybrids Containing a Diester Moiety
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1