替代转录组与植物恢复能力:技术创新与生物学见解

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-08-29 DOI:10.1007/s13562-024-00909-w
Ashish Kumar Pathak, Raja Jeet, Mathilde Moens, Yogesh Gupta, Vani Sharma, Kaushal Kumar Bhati
{"title":"替代转录组与植物恢复能力:技术创新与生物学见解","authors":"Ashish Kumar Pathak, Raja Jeet, Mathilde Moens, Yogesh Gupta, Vani Sharma, Kaushal Kumar Bhati","doi":"10.1007/s13562-024-00909-w","DOIUrl":null,"url":null,"abstract":"<p>The development of advanced high-throughput sequencing approaches has revealed the biomolecular diversity associated with central genetic dogmas like never before. Big genomics data highlight the hidden complexity of the genetic regulation of cellular machinery and physiological responses to environmental stimuli. The investigation and identification of alternative mRNA forms and protein diversity as adaptation mechanisms to environmental stimuli is one such case of unparallel genetic complexity in plant cells. Alternative splicing and selection of alternative start and stop sites during and after transcription lead to conditional variants across protein families. The biological importance of many such proteins is well understood, especially during reprogramming of plant stress responses and development. Interestingly, valuable methodologies and technical leads in the genome and alternative transcriptome sequencing from animals and model plants are now laying the groundwork for similar studies in crops. However, identifying alternative transcriptomes remains a major challenge for higher plants. Therefore, there is a need for improved library preparation methods and data analysis pipelines. We sought to examine the status of alternative transcriptome-associated studies on plant physiological regulation in response to environmental adaptation. In addition, we evaluated the recent technological advances available for studying alternative transcriptomes in plants.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alternative transcriptomes and plant resilience: technological innovations and biological insights\",\"authors\":\"Ashish Kumar Pathak, Raja Jeet, Mathilde Moens, Yogesh Gupta, Vani Sharma, Kaushal Kumar Bhati\",\"doi\":\"10.1007/s13562-024-00909-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of advanced high-throughput sequencing approaches has revealed the biomolecular diversity associated with central genetic dogmas like never before. Big genomics data highlight the hidden complexity of the genetic regulation of cellular machinery and physiological responses to environmental stimuli. The investigation and identification of alternative mRNA forms and protein diversity as adaptation mechanisms to environmental stimuli is one such case of unparallel genetic complexity in plant cells. Alternative splicing and selection of alternative start and stop sites during and after transcription lead to conditional variants across protein families. The biological importance of many such proteins is well understood, especially during reprogramming of plant stress responses and development. Interestingly, valuable methodologies and technical leads in the genome and alternative transcriptome sequencing from animals and model plants are now laying the groundwork for similar studies in crops. However, identifying alternative transcriptomes remains a major challenge for higher plants. Therefore, there is a need for improved library preparation methods and data analysis pipelines. We sought to examine the status of alternative transcriptome-associated studies on plant physiological regulation in response to environmental adaptation. In addition, we evaluated the recent technological advances available for studying alternative transcriptomes in plants.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13562-024-00909-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13562-024-00909-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

先进的高通量测序方法的发展前所未有地揭示了与中心基因教条相关的生物分子多样性。大基因组学数据凸显了细胞机制的遗传调控和对环境刺激的生理反应所隐藏的复杂性。调查和鉴定替代 mRNA 形式和蛋白质多样性作为对环境刺激的适应机制,就是植物细胞中无与伦比的遗传复杂性的一个实例。在转录过程中和转录后,替代剪接和选择替代起始和终止位点会导致蛋白质家族中出现条件变体。许多此类蛋白质的生物学重要性已广为人知,尤其是在植物胁迫反应和发育的重编程过程中。有趣的是,在动物和模式植物的基因组和替代转录组测序方面的宝贵方法和技术成果正在为农作物的类似研究奠定基础。然而,鉴定替代转录组仍然是高等植物面临的一大挑战。因此,需要改进文库制备方法和数据分析管道。我们试图考察植物生理调控对环境适应的替代转录组相关研究的现状。此外,我们还评估了研究植物替代转录本组的最新技术进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Alternative transcriptomes and plant resilience: technological innovations and biological insights

The development of advanced high-throughput sequencing approaches has revealed the biomolecular diversity associated with central genetic dogmas like never before. Big genomics data highlight the hidden complexity of the genetic regulation of cellular machinery and physiological responses to environmental stimuli. The investigation and identification of alternative mRNA forms and protein diversity as adaptation mechanisms to environmental stimuli is one such case of unparallel genetic complexity in plant cells. Alternative splicing and selection of alternative start and stop sites during and after transcription lead to conditional variants across protein families. The biological importance of many such proteins is well understood, especially during reprogramming of plant stress responses and development. Interestingly, valuable methodologies and technical leads in the genome and alternative transcriptome sequencing from animals and model plants are now laying the groundwork for similar studies in crops. However, identifying alternative transcriptomes remains a major challenge for higher plants. Therefore, there is a need for improved library preparation methods and data analysis pipelines. We sought to examine the status of alternative transcriptome-associated studies on plant physiological regulation in response to environmental adaptation. In addition, we evaluated the recent technological advances available for studying alternative transcriptomes in plants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1