通过数据增强和对比学习实现无监督弱光图像增强

Shao Junzhe, Zhang Zhibin
{"title":"通过数据增强和对比学习实现无监督弱光图像增强","authors":"Shao Junzhe, Zhang Zhibin","doi":"10.1080/13682199.2024.2395751","DOIUrl":null,"url":null,"abstract":"Today, with the increasing demand for visual perception and high-level computational vision tasks, the field of low-light enhancement is rapidly developing. However, models trained on existing data...","PeriodicalId":22456,"journal":{"name":"The Imaging Science Journal","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised low-light image enhancement by data augmentation and contrastive learning\",\"authors\":\"Shao Junzhe, Zhang Zhibin\",\"doi\":\"10.1080/13682199.2024.2395751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, with the increasing demand for visual perception and high-level computational vision tasks, the field of low-light enhancement is rapidly developing. However, models trained on existing data...\",\"PeriodicalId\":22456,\"journal\":{\"name\":\"The Imaging Science Journal\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Imaging Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/13682199.2024.2395751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Imaging Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13682199.2024.2395751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如今,随着人们对视觉感知和高级计算视觉任务的需求日益增长,弱光增强领域正在迅速发展。然而,根据现有数据训练的模型...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unsupervised low-light image enhancement by data augmentation and contrastive learning
Today, with the increasing demand for visual perception and high-level computational vision tasks, the field of low-light enhancement is rapidly developing. However, models trained on existing data...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of the Internet of Medical Things on Artificial Intelligence-enhanced medical imaging systems from 2019 to 2023 Advancements in adversarial generative text-to-image models: a review Enhancing image encryption security through integration multi-chaotic systems and mixed pixel-bit level Unsupervised low-light image enhancement by data augmentation and contrastive learning Minimum error threshold segmentation method for SAR image based on Rayleigh distribution assumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1