{"title":"耗散单自旋模型中的半兰道-齐纳斜坡到量子相变","authors":"Sei Suzuki","doi":"10.1140/epjb/s10051-024-00749-6","DOIUrl":null,"url":null,"abstract":"<p>We study the dynamics of a single spin coupled to a bosonic bath at zero temperature driven by a ramp of the bias field. A single spin coupled to a bosonic sub-Ohmic bath exhibits a quantum phase transition at a certain strength of spin-boson coupling. When the bias field is ramped from a large value to zero at this critical coupling strength, the system initialized at the ground state ends up with a finite magnetization due to the critical slowing down near the transition. On the basis of the pulse-impulse approximation, we derive a scaling law between the residual magnetization and the ramp speed. The obtained scaling relation is examined using a numerical simulation based on the tensor network. The data are in favor of the scaling law to hold. We discuss the demonstration of our theoretical results by means of quantum simulation using the quantum annealer.</p>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"97 8","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjb/s10051-024-00749-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Half Landau–Zener ramp to a quantum phase transition in a dissipative single spin model\",\"authors\":\"Sei Suzuki\",\"doi\":\"10.1140/epjb/s10051-024-00749-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the dynamics of a single spin coupled to a bosonic bath at zero temperature driven by a ramp of the bias field. A single spin coupled to a bosonic sub-Ohmic bath exhibits a quantum phase transition at a certain strength of spin-boson coupling. When the bias field is ramped from a large value to zero at this critical coupling strength, the system initialized at the ground state ends up with a finite magnetization due to the critical slowing down near the transition. On the basis of the pulse-impulse approximation, we derive a scaling law between the residual magnetization and the ramp speed. The obtained scaling relation is examined using a numerical simulation based on the tensor network. The data are in favor of the scaling law to hold. We discuss the demonstration of our theoretical results by means of quantum simulation using the quantum annealer.</p>\",\"PeriodicalId\":787,\"journal\":{\"name\":\"The European Physical Journal B\",\"volume\":\"97 8\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjb/s10051-024-00749-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal B\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjb/s10051-024-00749-6\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-024-00749-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Half Landau–Zener ramp to a quantum phase transition in a dissipative single spin model
We study the dynamics of a single spin coupled to a bosonic bath at zero temperature driven by a ramp of the bias field. A single spin coupled to a bosonic sub-Ohmic bath exhibits a quantum phase transition at a certain strength of spin-boson coupling. When the bias field is ramped from a large value to zero at this critical coupling strength, the system initialized at the ground state ends up with a finite magnetization due to the critical slowing down near the transition. On the basis of the pulse-impulse approximation, we derive a scaling law between the residual magnetization and the ramp speed. The obtained scaling relation is examined using a numerical simulation based on the tensor network. The data are in favor of the scaling law to hold. We discuss the demonstration of our theoretical results by means of quantum simulation using the quantum annealer.