利用自然语言处理量化学生组织活动的效果

Lyberius Ennio F. Taruc, Arvin R. De La Cruz
{"title":"利用自然语言处理量化学生组织活动的效果","authors":"Lyberius Ennio F. Taruc, Arvin R. De La Cruz","doi":"arxiv-2408.08694","DOIUrl":null,"url":null,"abstract":"Student extracurricular activities play an important role in enriching the\nstudents' educational experiences. With the increasing popularity of Machine\nLearning and Natural Language Processing, it becomes a logical step that\nincorporating ML-NLP in improving extracurricular activities is a potential\nfocus of study in Artificial Intelligence (AI). This research study aims to\ndevelop a machine learning workflow that will quantify the effectiveness of\nstudent-organized activities based on student emotional responses using\nsentiment analysis. The study uses the Bidirectional Encoder Representations\nfrom Transformers (BERT) Large Language Model (LLM) called via the\npysentimiento toolkit, as a Transformer pipeline in Hugging Face. A sample data\nset from Organization C, a Recognized Student Organization (RSO) of a higher\neducational institute in the Philippines, College X, was used to develop the\nworkflow. The workflow consisted of data preprocessing, key feature selection,\nLLM feature processing, and score aggregation, resulting in an Event Score for\neach data set. The results show that the BERT LLM can also be used effectively\nin analyzing sentiment beyond product reviews and post comments. For the\nstudent affairs offices of educational institutions, this study can provide a\npractical example of how NLP can be applied to real-world scenarios, showcasing\nthe potential impact of data-driven decision making.","PeriodicalId":501168,"journal":{"name":"arXiv - CS - Emerging Technologies","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying the Effectiveness of Student Organization Activities using Natural Language Processing\",\"authors\":\"Lyberius Ennio F. Taruc, Arvin R. De La Cruz\",\"doi\":\"arxiv-2408.08694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Student extracurricular activities play an important role in enriching the\\nstudents' educational experiences. With the increasing popularity of Machine\\nLearning and Natural Language Processing, it becomes a logical step that\\nincorporating ML-NLP in improving extracurricular activities is a potential\\nfocus of study in Artificial Intelligence (AI). This research study aims to\\ndevelop a machine learning workflow that will quantify the effectiveness of\\nstudent-organized activities based on student emotional responses using\\nsentiment analysis. The study uses the Bidirectional Encoder Representations\\nfrom Transformers (BERT) Large Language Model (LLM) called via the\\npysentimiento toolkit, as a Transformer pipeline in Hugging Face. A sample data\\nset from Organization C, a Recognized Student Organization (RSO) of a higher\\neducational institute in the Philippines, College X, was used to develop the\\nworkflow. The workflow consisted of data preprocessing, key feature selection,\\nLLM feature processing, and score aggregation, resulting in an Event Score for\\neach data set. The results show that the BERT LLM can also be used effectively\\nin analyzing sentiment beyond product reviews and post comments. For the\\nstudent affairs offices of educational institutions, this study can provide a\\npractical example of how NLP can be applied to real-world scenarios, showcasing\\nthe potential impact of data-driven decision making.\",\"PeriodicalId\":501168,\"journal\":{\"name\":\"arXiv - CS - Emerging Technologies\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Emerging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.08694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.08694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

学生课外活动在丰富学生教育经历方面发挥着重要作用。随着机器学习和自然语言处理技术的日益普及,将 ML-NLP 应用于改善课外活动也就顺理成章地成为了人工智能(AI)领域的一个潜在研究重点。本研究旨在开发一种机器学习工作流程,利用情感分析,根据学生的情感反应量化学生组织的活动的有效性。本研究使用了通过pysentimiento工具包调用的双向编码器表征转换器(BERT)大语言模型(LLM),作为 "拥抱脸庞 "中的转换器管道。在开发工作流时,使用了来自菲律宾一所高等院校 X 学院的认可学生组织(RSO)C 组织的样本数据集。工作流程包括数据预处理、关键特征选择、LLM 特征处理和得分汇总,最终得出每个数据集的事件得分。结果表明,BERT LLM 也可以有效地用于产品评论和帖子评论之外的情感分析。对于教育机构的学生事务办公室来说,这项研究为如何将 NLP 应用于实际场景提供了一个实用范例,展示了数据驱动决策的潜在影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantifying the Effectiveness of Student Organization Activities using Natural Language Processing
Student extracurricular activities play an important role in enriching the students' educational experiences. With the increasing popularity of Machine Learning and Natural Language Processing, it becomes a logical step that incorporating ML-NLP in improving extracurricular activities is a potential focus of study in Artificial Intelligence (AI). This research study aims to develop a machine learning workflow that will quantify the effectiveness of student-organized activities based on student emotional responses using sentiment analysis. The study uses the Bidirectional Encoder Representations from Transformers (BERT) Large Language Model (LLM) called via the pysentimiento toolkit, as a Transformer pipeline in Hugging Face. A sample data set from Organization C, a Recognized Student Organization (RSO) of a higher educational institute in the Philippines, College X, was used to develop the workflow. The workflow consisted of data preprocessing, key feature selection, LLM feature processing, and score aggregation, resulting in an Event Score for each data set. The results show that the BERT LLM can also be used effectively in analyzing sentiment beyond product reviews and post comments. For the student affairs offices of educational institutions, this study can provide a practical example of how NLP can be applied to real-world scenarios, showcasing the potential impact of data-driven decision making.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pennsieve - A Collaborative Platform for Translational Neuroscience and Beyond Analysing Attacks on Blockchain Systems in a Layer-based Approach Exploring Utility in a Real-World Warehouse Optimization Problem: Formulation Based on Quantun Annealers and Preliminary Results High Definition Map Mapping and Update: A General Overview and Future Directions Detection Made Easy: Potentials of Large Language Models for Solidity Vulnerabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1