:针对具有可变合法流量的开放集攻击频谱,实现细粒度未知类别检测

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE/ACM Transactions on Networking Pub Date : 2024-08-19 DOI:10.1109/TNET.2024.3413789
Ziming Zhao;Zhaoxuan Li;Xiaofei Xie;Jiongchi Yu;Fan Zhang;Rui Zhang;Binbin Chen;Xiangyang Luo;Ming Hu;Wenrui Ma
{"title":":针对具有可变合法流量的开放集攻击频谱,实现细粒度未知类别检测","authors":"Ziming Zhao;Zhaoxuan Li;Xiaofei Xie;Jiongchi Yu;Fan Zhang;Rui Zhang;Binbin Chen;Xiangyang Luo;Ming Hu;Wenrui Ma","doi":"10.1109/TNET.2024.3413789","DOIUrl":null,"url":null,"abstract":"Anomaly-based network intrusion detection systems (NIDSs) are essential for ensuring cybersecurity. However, the security communities realize some limitations when they put most existing proposals into practice. The challenges are mainly concerned with (i) fine-grained unknown attack detection and (ii) ever-changing legitimate traffic adaptation. To tackle these problem, we present three key design norms. The core idea is to construct a model to split the data distribution hyperplane and leverage the concept of isolation, as well as advance the incremental model update. We utilize the isolation tree as the backbone to design our model, named FOSS, to echo back three norms. By analyzing the popular dataset of network intrusion traces, we show that FOSS significantly outperforms the state-of-the-art methods. Further, we perform an initial deployment of FOSS by working with the Internet Service Provider (ISP) to detect distributed denial of service (DDoS) attacks. With real-world tests and manual analysis, we demonstrate the effectiveness of FOSS to identify previously-unseen attacks in a fine-grained manner.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 5","pages":"3945-3960"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FOSS: Towards Fine-Grained Unknown Class Detection Against the Open-Set Attack Spectrum With Variable Legitimate Traffic\",\"authors\":\"Ziming Zhao;Zhaoxuan Li;Xiaofei Xie;Jiongchi Yu;Fan Zhang;Rui Zhang;Binbin Chen;Xiangyang Luo;Ming Hu;Wenrui Ma\",\"doi\":\"10.1109/TNET.2024.3413789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anomaly-based network intrusion detection systems (NIDSs) are essential for ensuring cybersecurity. However, the security communities realize some limitations when they put most existing proposals into practice. The challenges are mainly concerned with (i) fine-grained unknown attack detection and (ii) ever-changing legitimate traffic adaptation. To tackle these problem, we present three key design norms. The core idea is to construct a model to split the data distribution hyperplane and leverage the concept of isolation, as well as advance the incremental model update. We utilize the isolation tree as the backbone to design our model, named FOSS, to echo back three norms. By analyzing the popular dataset of network intrusion traces, we show that FOSS significantly outperforms the state-of-the-art methods. Further, we perform an initial deployment of FOSS by working with the Internet Service Provider (ISP) to detect distributed denial of service (DDoS) attacks. With real-world tests and manual analysis, we demonstrate the effectiveness of FOSS to identify previously-unseen attacks in a fine-grained manner.\",\"PeriodicalId\":13443,\"journal\":{\"name\":\"IEEE/ACM Transactions on Networking\",\"volume\":\"32 5\",\"pages\":\"3945-3960\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM Transactions on Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10638516/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10638516/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

基于异常的网络入侵检测系统(NIDS)对确保网络安全至关重要。然而,当安全界将大多数现有建议付诸实践时,却发现存在一些局限性。这些挑战主要涉及 (i) 细粒度未知攻击检测和 (ii) 不断变化的合法流量适应。为了解决这些问题,我们提出了三个关键的设计规范。核心思想是构建一个模型来分割数据分布超平面,并充分利用隔离概念,以及推进增量模型更新。我们以隔离树为骨干,设计了名为 FOSS 的模型,以呼应上述三个规范。通过分析流行的网络入侵痕迹数据集,我们发现 FOSS 的性能明显优于最先进的方法。此外,我们还与互联网服务提供商(ISP)合作,对 FOSS 进行了初步部署,以检测分布式拒绝服务(DDoS)攻击。通过实际测试和人工分析,我们证明了 FOSS 能够有效地以细粒度的方式识别以前未曾发现的攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FOSS: Towards Fine-Grained Unknown Class Detection Against the Open-Set Attack Spectrum With Variable Legitimate Traffic
Anomaly-based network intrusion detection systems (NIDSs) are essential for ensuring cybersecurity. However, the security communities realize some limitations when they put most existing proposals into practice. The challenges are mainly concerned with (i) fine-grained unknown attack detection and (ii) ever-changing legitimate traffic adaptation. To tackle these problem, we present three key design norms. The core idea is to construct a model to split the data distribution hyperplane and leverage the concept of isolation, as well as advance the incremental model update. We utilize the isolation tree as the backbone to design our model, named FOSS, to echo back three norms. By analyzing the popular dataset of network intrusion traces, we show that FOSS significantly outperforms the state-of-the-art methods. Further, we perform an initial deployment of FOSS by working with the Internet Service Provider (ISP) to detect distributed denial of service (DDoS) attacks. With real-world tests and manual analysis, we demonstrate the effectiveness of FOSS to identify previously-unseen attacks in a fine-grained manner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE/ACM Transactions on Networking
IEEE/ACM Transactions on Networking 工程技术-电信学
CiteScore
8.20
自引率
5.40%
发文量
246
审稿时长
4-8 weeks
期刊介绍: The IEEE/ACM Transactions on Networking’s high-level objective is to publish high-quality, original research results derived from theoretical or experimental exploration of the area of communication/computer networking, covering all sorts of information transport networks over all sorts of physical layer technologies, both wireline (all kinds of guided media: e.g., copper, optical) and wireless (e.g., radio-frequency, acoustic (e.g., underwater), infra-red), or hybrids of these. The journal welcomes applied contributions reporting on novel experiences and experiments with actual systems.
期刊最新文献
Table of Contents IEEE/ACM Transactions on Networking Information for Authors IEEE/ACM Transactions on Networking Society Information IEEE/ACM Transactions on Networking Publication Information FPCA: Parasitic Coding Authentication for UAVs by FM Signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1