具有灵活性能 SLA 和价格的无服务器查询处理

Haoqiong Bian, Dongyang Geng, Yunpeng Chai, Anastasia Ailamaki
{"title":"具有灵活性能 SLA 和价格的无服务器查询处理","authors":"Haoqiong Bian, Dongyang Geng, Yunpeng Chai, Anastasia Ailamaki","doi":"arxiv-2409.01388","DOIUrl":null,"url":null,"abstract":"Serverless query processing has become increasingly popular due to its\nauto-scaling, high elasticity, and pay-as-you-go pricing. It allows cloud data\nwarehouse (or lakehouse) users to focus on data analysis without the burden of\nmanaging systems and resources. Accordingly, in serverless query services,\nusers become more concerned about cost-efficiency under acceptable performance\nthan performance under fixed resources. This poses new challenges for\nserverless query engine design in providing flexible performance service-level\nagreements (SLAs) and cost-efficiency (i.e., prices). In this paper, we first define the problem of flexible performance SLAs and\nprices in serverless query processing and discuss its significance. Then, we\nenvision the challenges and solutions for solving this problem and the\nopportunities it raises for other database research. Finally, we present\nPixelsDB, an open-source prototype with three service levels supported by\ndedicated architectural designs. Evaluations show that PixelsDB reduces\nresource costs by 65.5% for near-real-world workloads generated by Cloud\nAnalytics Benchmark (CAB) while not violating the pending time guarantees.","PeriodicalId":501123,"journal":{"name":"arXiv - CS - Databases","volume":"95 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Serverless Query Processing with Flexible Performance SLAs and Prices\",\"authors\":\"Haoqiong Bian, Dongyang Geng, Yunpeng Chai, Anastasia Ailamaki\",\"doi\":\"arxiv-2409.01388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Serverless query processing has become increasingly popular due to its\\nauto-scaling, high elasticity, and pay-as-you-go pricing. It allows cloud data\\nwarehouse (or lakehouse) users to focus on data analysis without the burden of\\nmanaging systems and resources. Accordingly, in serverless query services,\\nusers become more concerned about cost-efficiency under acceptable performance\\nthan performance under fixed resources. This poses new challenges for\\nserverless query engine design in providing flexible performance service-level\\nagreements (SLAs) and cost-efficiency (i.e., prices). In this paper, we first define the problem of flexible performance SLAs and\\nprices in serverless query processing and discuss its significance. Then, we\\nenvision the challenges and solutions for solving this problem and the\\nopportunities it raises for other database research. Finally, we present\\nPixelsDB, an open-source prototype with three service levels supported by\\ndedicated architectural designs. Evaluations show that PixelsDB reduces\\nresource costs by 65.5% for near-real-world workloads generated by Cloud\\nAnalytics Benchmark (CAB) while not violating the pending time guarantees.\",\"PeriodicalId\":501123,\"journal\":{\"name\":\"arXiv - CS - Databases\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Databases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无服务器查询处理因其自动扩展、高弹性和即用即付的价格而越来越受欢迎。它允许云数据仓库(或湖库)用户专注于数据分析,而无需承担管理系统和资源的负担。因此,在无服务器查询服务中,用户更关心的是可接受性能下的成本效益,而不是固定资源下的性能。这对无服务器查询引擎的设计提出了新的挑战,即提供灵活的性能服务级别协议(SLA)和成本效益(即价格)。在本文中,我们首先定义了无服务器查询处理中灵活的性能服务级别协议和价格问题,并讨论了其意义。然后,我们展望了解决这一问题的挑战和解决方案,以及它为其他数据库研究带来的机遇。最后,我们介绍了像素数据库(PixelsDB),这是一个开源原型,通过专用架构设计支持三种服务级别。评估结果表明,在云分析基准(CAB)生成的接近真实世界的工作负载中,PixelsDB降低了65.5%的资源成本,同时没有违反待处理时间保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Serverless Query Processing with Flexible Performance SLAs and Prices
Serverless query processing has become increasingly popular due to its auto-scaling, high elasticity, and pay-as-you-go pricing. It allows cloud data warehouse (or lakehouse) users to focus on data analysis without the burden of managing systems and resources. Accordingly, in serverless query services, users become more concerned about cost-efficiency under acceptable performance than performance under fixed resources. This poses new challenges for serverless query engine design in providing flexible performance service-level agreements (SLAs) and cost-efficiency (i.e., prices). In this paper, we first define the problem of flexible performance SLAs and prices in serverless query processing and discuss its significance. Then, we envision the challenges and solutions for solving this problem and the opportunities it raises for other database research. Finally, we present PixelsDB, an open-source prototype with three service levels supported by dedicated architectural designs. Evaluations show that PixelsDB reduces resource costs by 65.5% for near-real-world workloads generated by Cloud Analytics Benchmark (CAB) while not violating the pending time guarantees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Data Evaluation Benchmark for Data Wrangling Recommendation System Messy Code Makes Managing ML Pipelines Difficult? Just Let LLMs Rewrite the Code! Fast and Adaptive Bulk Loading of Multidimensional Points Matrix Profile for Anomaly Detection on Multidimensional Time Series Extending predictive process monitoring for collaborative processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1