QirK:通过知识图谱上的中间表示进行问题解答

Jan Luca Scheerer, Anton Lykov, Moe Kayali, Ilias Fountalis, Dan Olteanu, Nikolaos Vasiloglou, Dan Suciu
{"title":"QirK:通过知识图谱上的中间表示进行问题解答","authors":"Jan Luca Scheerer, Anton Lykov, Moe Kayali, Ilias Fountalis, Dan Olteanu, Nikolaos Vasiloglou, Dan Suciu","doi":"arxiv-2408.07494","DOIUrl":null,"url":null,"abstract":"We demonstrate QirK, a system for answering natural language questions on\nKnowledge Graphs (KG). QirK can answer structurally complex questions that are\nstill beyond the reach of emerging Large Language Models (LLMs). It does so\nusing a unique combination of database technology, LLMs, and semantic search\nover vector embeddings. The glue for these components is an intermediate\nrepresentation (IR). The input question is mapped to IR using LLMs, which is\nthen repaired into a valid relational database query with the aid of a semantic\nsearch on vector embeddings. This allows a practical synthesis of LLM\ncapabilities and KG reliability. A short video demonstrating QirK is available at\nhttps://youtu.be/6c81BLmOZ0U.","PeriodicalId":501123,"journal":{"name":"arXiv - CS - Databases","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"QirK: Question Answering via Intermediate Representation on Knowledge Graphs\",\"authors\":\"Jan Luca Scheerer, Anton Lykov, Moe Kayali, Ilias Fountalis, Dan Olteanu, Nikolaos Vasiloglou, Dan Suciu\",\"doi\":\"arxiv-2408.07494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate QirK, a system for answering natural language questions on\\nKnowledge Graphs (KG). QirK can answer structurally complex questions that are\\nstill beyond the reach of emerging Large Language Models (LLMs). It does so\\nusing a unique combination of database technology, LLMs, and semantic search\\nover vector embeddings. The glue for these components is an intermediate\\nrepresentation (IR). The input question is mapped to IR using LLMs, which is\\nthen repaired into a valid relational database query with the aid of a semantic\\nsearch on vector embeddings. This allows a practical synthesis of LLM\\ncapabilities and KG reliability. A short video demonstrating QirK is available at\\nhttps://youtu.be/6c81BLmOZ0U.\",\"PeriodicalId\":501123,\"journal\":{\"name\":\"arXiv - CS - Databases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Databases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.07494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.07494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们展示了 QirK,这是一个在知识图谱(KG)上回答自然语言问题的系统。QirK 可以回答结构复杂的问题,而新兴的大型语言模型 (LLM) 仍然无法做到这一点。它将数据库技术、LLM 和向量嵌入的语义搜索独特地结合在一起。这些组件的粘合剂是中间呈现(IR)。输入问题使用 LLM 映射到 IR,然后借助向量嵌入的语义搜索将其修复为有效的关系数据库查询。这样就可以将 LLM 能力和 KG 可靠性结合起来。演示 QirK 的视频短片请访问:https://youtu.be/6c81BLmOZ0U。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
QirK: Question Answering via Intermediate Representation on Knowledge Graphs
We demonstrate QirK, a system for answering natural language questions on Knowledge Graphs (KG). QirK can answer structurally complex questions that are still beyond the reach of emerging Large Language Models (LLMs). It does so using a unique combination of database technology, LLMs, and semantic search over vector embeddings. The glue for these components is an intermediate representation (IR). The input question is mapped to IR using LLMs, which is then repaired into a valid relational database query with the aid of a semantic search on vector embeddings. This allows a practical synthesis of LLM capabilities and KG reliability. A short video demonstrating QirK is available at https://youtu.be/6c81BLmOZ0U.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Data Evaluation Benchmark for Data Wrangling Recommendation System Messy Code Makes Managing ML Pipelines Difficult? Just Let LLMs Rewrite the Code! Fast and Adaptive Bulk Loading of Multidimensional Points Matrix Profile for Anomaly Detection on Multidimensional Time Series Extending predictive process monitoring for collaborative processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1