通过 OLTP DBMS 中的冲突预测实现智能事务调度

Tieying Zhang, Anthony Tomasic, Andrew Pavlo
{"title":"通过 OLTP DBMS 中的冲突预测实现智能事务调度","authors":"Tieying Zhang, Anthony Tomasic, Andrew Pavlo","doi":"arxiv-2409.01675","DOIUrl":null,"url":null,"abstract":"Current architectures for main-memory online transaction processing (OLTP)\ndatabase management systems (DBMS) typically use random scheduling to assign\ntransactions to threads. This approach achieves uniform load across threads but\nit ignores the likelihood of conflicts between transactions. If the DBMS could\nestimate the potential for transaction conflict and then intelligently schedule\ntransactions to avoid conflicts, then the system could improve its performance.\nSuch estimation of transaction conflict, however, is non-trivial for several\nreasons. First, conflicts occur under complex conditions that are far removed\nin time from the scheduling decision. Second, transactions must be represented\nin a compact and efficient manner to allow for fast conflict detection. Third,\ngiven some evidence of potential conflict, the DBMS must schedule transactions\nin such a way that minimizes this conflict. In this paper, we systematically\nexplore the design decisions for solving these problems. We then empirically\nmeasure the performance impact of different representations on standard OLTP\nbenchmarks. Our results show that intelligent scheduling using a history\nincreases throughput by $\\sim$40\\% on 20-core machine.","PeriodicalId":501123,"journal":{"name":"arXiv - CS - Databases","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent Transaction Scheduling via Conflict Prediction in OLTP DBMS\",\"authors\":\"Tieying Zhang, Anthony Tomasic, Andrew Pavlo\",\"doi\":\"arxiv-2409.01675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current architectures for main-memory online transaction processing (OLTP)\\ndatabase management systems (DBMS) typically use random scheduling to assign\\ntransactions to threads. This approach achieves uniform load across threads but\\nit ignores the likelihood of conflicts between transactions. If the DBMS could\\nestimate the potential for transaction conflict and then intelligently schedule\\ntransactions to avoid conflicts, then the system could improve its performance.\\nSuch estimation of transaction conflict, however, is non-trivial for several\\nreasons. First, conflicts occur under complex conditions that are far removed\\nin time from the scheduling decision. Second, transactions must be represented\\nin a compact and efficient manner to allow for fast conflict detection. Third,\\ngiven some evidence of potential conflict, the DBMS must schedule transactions\\nin such a way that minimizes this conflict. In this paper, we systematically\\nexplore the design decisions for solving these problems. We then empirically\\nmeasure the performance impact of different representations on standard OLTP\\nbenchmarks. Our results show that intelligent scheduling using a history\\nincreases throughput by $\\\\sim$40\\\\% on 20-core machine.\",\"PeriodicalId\":501123,\"journal\":{\"name\":\"arXiv - CS - Databases\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Databases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当前主内存联机事务处理(OLTP)数据库管理系统(DBMS)的架构通常使用随机调度将事务分配给线程。这种方法实现了线程间负载的一致性,但却忽略了事务间冲突的可能性。如果 DBMS 能够估计事务冲突的可能性,然后智能地调度事务以避免冲突,那么系统就能提高性能。首先,冲突发生的条件很复杂,与调度决策的时间相距甚远。其次,事务必须以紧凑高效的方式表示,以便快速检测冲突。第三,考虑到潜在冲突的某些证据,数据库管理系统必须以最小化冲突的方式调度事务。在本文中,我们系统地探讨了解决这些问题的设计决策。然后,我们在标准 OLTP 基准上实证测量了不同表示法对性能的影响。我们的结果表明,使用历史记录的智能调度在 20 核机器上将吞吐量提高了 $\sim$40\% 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent Transaction Scheduling via Conflict Prediction in OLTP DBMS
Current architectures for main-memory online transaction processing (OLTP) database management systems (DBMS) typically use random scheduling to assign transactions to threads. This approach achieves uniform load across threads but it ignores the likelihood of conflicts between transactions. If the DBMS could estimate the potential for transaction conflict and then intelligently schedule transactions to avoid conflicts, then the system could improve its performance. Such estimation of transaction conflict, however, is non-trivial for several reasons. First, conflicts occur under complex conditions that are far removed in time from the scheduling decision. Second, transactions must be represented in a compact and efficient manner to allow for fast conflict detection. Third, given some evidence of potential conflict, the DBMS must schedule transactions in such a way that minimizes this conflict. In this paper, we systematically explore the design decisions for solving these problems. We then empirically measure the performance impact of different representations on standard OLTP benchmarks. Our results show that intelligent scheduling using a history increases throughput by $\sim$40\% on 20-core machine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Data Evaluation Benchmark for Data Wrangling Recommendation System Messy Code Makes Managing ML Pipelines Difficult? Just Let LLMs Rewrite the Code! Fast and Adaptive Bulk Loading of Multidimensional Points Matrix Profile for Anomaly Detection on Multidimensional Time Series Extending predictive process monitoring for collaborative processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1