{"title":"二元粉末体系堆积密度的理论估算:回顾与比较分析","authors":"V. I. Kushch, V. G. Kulych","doi":"10.3103/S1063457624040063","DOIUrl":null,"url":null,"abstract":"<p>The review and comparative analysis of known literature approaches and methods for predicting the packing density of binary powder systems are carried out. A theoretical model is proposed for a binary mixture to provide the spline approximation of calculated and research data with an appropriate accuracy. The model parameters are physical values, whose comparison for different binary systems makes it possible to estimate both the effect of a method of their formation on the packing density and the degree of adequacy to real powder materials for the available theoretical models.</p>","PeriodicalId":670,"journal":{"name":"Journal of Superhard Materials","volume":"46 4","pages":"245 - 259"},"PeriodicalIF":1.2000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical Estimates for the Packing Density of Binary Powder Systems: Review and Comparative Analysis\",\"authors\":\"V. I. Kushch, V. G. Kulych\",\"doi\":\"10.3103/S1063457624040063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The review and comparative analysis of known literature approaches and methods for predicting the packing density of binary powder systems are carried out. A theoretical model is proposed for a binary mixture to provide the spline approximation of calculated and research data with an appropriate accuracy. The model parameters are physical values, whose comparison for different binary systems makes it possible to estimate both the effect of a method of their formation on the packing density and the degree of adequacy to real powder materials for the available theoretical models.</p>\",\"PeriodicalId\":670,\"journal\":{\"name\":\"Journal of Superhard Materials\",\"volume\":\"46 4\",\"pages\":\"245 - 259\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Superhard Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1063457624040063\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superhard Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.3103/S1063457624040063","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Theoretical Estimates for the Packing Density of Binary Powder Systems: Review and Comparative Analysis
The review and comparative analysis of known literature approaches and methods for predicting the packing density of binary powder systems are carried out. A theoretical model is proposed for a binary mixture to provide the spline approximation of calculated and research data with an appropriate accuracy. The model parameters are physical values, whose comparison for different binary systems makes it possible to estimate both the effect of a method of their formation on the packing density and the degree of adequacy to real powder materials for the available theoretical models.
期刊介绍:
Journal of Superhard Materials presents up-to-date results of basic and applied research on production, properties, and applications of superhard materials and related tools. It publishes the results of fundamental research on physicochemical processes of forming and growth of single-crystal, polycrystalline, and dispersed materials, diamond and diamond-like films; developments of methods for spontaneous and controlled synthesis of superhard materials and methods for static, explosive and epitaxial synthesis. The focus of the journal is large single crystals of synthetic diamonds; elite grinding powders and micron powders of synthetic diamonds and cubic boron nitride; polycrystalline and composite superhard materials based on diamond and cubic boron nitride; diamond and carbide tools for highly efficient metal-working, boring, stone-working, coal mining and geological exploration; articles of ceramic; polishing pastes for high-precision optics; precision lathes for diamond turning; technologies of precise machining of metals, glass, and ceramics. The journal covers all fundamental and technological aspects of synthesis, characterization, properties, devices and applications of these materials. The journal welcomes manuscripts from all countries in the English language.