B. Chowdhury, R. Nandy, N. C. Jana, P. Brandão, A. Panja
{"title":"由 N3O 供体希夫碱配体衍生的 $$\\mathbf{Ni(NCS)}_{math\\bf{6}}^{mathbf{4}-}$ 桥式同金属 Ni(II) 链的首次结构表征","authors":"B. Chowdhury, R. Nandy, N. C. Jana, P. Brandão, A. Panja","doi":"10.1134/S0022476624080018","DOIUrl":null,"url":null,"abstract":"<p>Thiocyanate bridged homometallic Ni(II) chains have potential applications in areas such as molecular magnetism and spintronics due to their tunable magnetic properties. The magnetic properties of these chains are of particular interest and can lead to intriguing magnetic behaviors, such as antiferromagnetic or ferromagnetic interactions. In this context, we have successfully synthesized a <span>\\(\\text{Ni(NCS)}_{\\text{6}}^{\\text{4}-}\\)</span> bridge Ni(II) chain complex [Ni<sub>2</sub>(H<sub>2</sub>L)<sub>2</sub>(μ1,3-NCS)<sub>2</sub>(NCS)<sub>4</sub>]<sub><i>n</i></sub>∙2<i>n</i>CH<sub>3</sub>CN (<b>1</b>), derived from a tetradentate N<sub>3</sub>O donor Schiff base ligand (HL). It has been thoroughly characterized by the help of elemental analysis and IR spectroscopy. Single crystal X-ray crystallography has confirmed the geometry of the chain complexes. Both Ni1 and Ni2 centers exhibit hexa-coordination with slightly distorted octahedral geometries, and their coordination environments differ significantly (NiN<sub>2</sub>O<sub>2</sub>S<sub>2</sub> for Ni1 and NiN<sub>6</sub> for Ni2). Within the solid-state structure of the complex, a noteworthy two-dimensional network of hydrogen bonding is observed. The present complex showing a unique example in the realm of single thiocyanato-bridged Ni(II) chains.</p>","PeriodicalId":668,"journal":{"name":"Journal of Structural Chemistry","volume":"65 8","pages":"1477 - 1487"},"PeriodicalIF":1.2000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The First Structural Characterization of a \\\\(\\\\mathbf{Ni(NCS)}_{\\\\mathbf{6}}^{\\\\mathbf{4}-}\\\\) Bridged Homometallic Ni(II) Chain Derived from an N3O Donor Schiff Base Ligand\",\"authors\":\"B. Chowdhury, R. Nandy, N. C. Jana, P. Brandão, A. Panja\",\"doi\":\"10.1134/S0022476624080018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Thiocyanate bridged homometallic Ni(II) chains have potential applications in areas such as molecular magnetism and spintronics due to their tunable magnetic properties. The magnetic properties of these chains are of particular interest and can lead to intriguing magnetic behaviors, such as antiferromagnetic or ferromagnetic interactions. In this context, we have successfully synthesized a <span>\\\\(\\\\text{Ni(NCS)}_{\\\\text{6}}^{\\\\text{4}-}\\\\)</span> bridge Ni(II) chain complex [Ni<sub>2</sub>(H<sub>2</sub>L)<sub>2</sub>(μ1,3-NCS)<sub>2</sub>(NCS)<sub>4</sub>]<sub><i>n</i></sub>∙2<i>n</i>CH<sub>3</sub>CN (<b>1</b>), derived from a tetradentate N<sub>3</sub>O donor Schiff base ligand (HL). It has been thoroughly characterized by the help of elemental analysis and IR spectroscopy. Single crystal X-ray crystallography has confirmed the geometry of the chain complexes. Both Ni1 and Ni2 centers exhibit hexa-coordination with slightly distorted octahedral geometries, and their coordination environments differ significantly (NiN<sub>2</sub>O<sub>2</sub>S<sub>2</sub> for Ni1 and NiN<sub>6</sub> for Ni2). Within the solid-state structure of the complex, a noteworthy two-dimensional network of hydrogen bonding is observed. The present complex showing a unique example in the realm of single thiocyanato-bridged Ni(II) chains.</p>\",\"PeriodicalId\":668,\"journal\":{\"name\":\"Journal of Structural Chemistry\",\"volume\":\"65 8\",\"pages\":\"1477 - 1487\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Structural Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0022476624080018\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S0022476624080018","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
The First Structural Characterization of a \(\mathbf{Ni(NCS)}_{\mathbf{6}}^{\mathbf{4}-}\) Bridged Homometallic Ni(II) Chain Derived from an N3O Donor Schiff Base Ligand
Thiocyanate bridged homometallic Ni(II) chains have potential applications in areas such as molecular magnetism and spintronics due to their tunable magnetic properties. The magnetic properties of these chains are of particular interest and can lead to intriguing magnetic behaviors, such as antiferromagnetic or ferromagnetic interactions. In this context, we have successfully synthesized a \(\text{Ni(NCS)}_{\text{6}}^{\text{4}-}\) bridge Ni(II) chain complex [Ni2(H2L)2(μ1,3-NCS)2(NCS)4]n∙2nCH3CN (1), derived from a tetradentate N3O donor Schiff base ligand (HL). It has been thoroughly characterized by the help of elemental analysis and IR spectroscopy. Single crystal X-ray crystallography has confirmed the geometry of the chain complexes. Both Ni1 and Ni2 centers exhibit hexa-coordination with slightly distorted octahedral geometries, and their coordination environments differ significantly (NiN2O2S2 for Ni1 and NiN6 for Ni2). Within the solid-state structure of the complex, a noteworthy two-dimensional network of hydrogen bonding is observed. The present complex showing a unique example in the realm of single thiocyanato-bridged Ni(II) chains.
期刊介绍:
Journal is an interdisciplinary publication covering all aspects of structural chemistry, including the theory of molecular structure and chemical bond; the use of physical methods to study the electronic and spatial structure of chemical species; structural features of liquids, solutions, surfaces, supramolecular systems, nano- and solid materials; and the crystal structure of solids.