CryptoAnalytics:利用机器学习技术预测加密钱币价格

Pasquale De Rosa, Pascal Felber, Valerio Schiavoni
{"title":"CryptoAnalytics:利用机器学习技术预测加密钱币价格","authors":"Pasquale De Rosa, Pascal Felber, Valerio Schiavoni","doi":"arxiv-2409.04106","DOIUrl":null,"url":null,"abstract":"This paper introduces CryptoAnalytics, a software toolkit for cryptocoins\nprice forecasting with machine learning (ML) techniques. Cryptocoins are\ntradable digital assets exchanged for specific trading prices. While history\nhas shown the extreme volatility of such trading prices, the ability to\nefficiently model and forecast the time series resulting from the exchange\nprice volatility remains an open research challenge. Good results can been\nachieved with state-of-the-art ML techniques, including Gradient-Boosting\nMachines (GBMs) and Recurrent Neural Networks (RNNs). CryptoAnalytics is a\nsoftware toolkit to easily train these models and make inference on up-to-date\ncryptocoin trading price data, with facilities to fetch datasets from one of\nthe main leading aggregator websites, i.e., CoinMarketCap, train models and\ninfer the future trends. This software is implemented in Python. It relies on\nPyTorch for the implementation of RNNs (LSTM and GRU), while for GBMs, it\nleverages on XgBoost, LightGBM and CatBoost.","PeriodicalId":501309,"journal":{"name":"arXiv - CS - Computational Engineering, Finance, and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CryptoAnalytics: Cryptocoins Price Forecasting with Machine Learning Techniques\",\"authors\":\"Pasquale De Rosa, Pascal Felber, Valerio Schiavoni\",\"doi\":\"arxiv-2409.04106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces CryptoAnalytics, a software toolkit for cryptocoins\\nprice forecasting with machine learning (ML) techniques. Cryptocoins are\\ntradable digital assets exchanged for specific trading prices. While history\\nhas shown the extreme volatility of such trading prices, the ability to\\nefficiently model and forecast the time series resulting from the exchange\\nprice volatility remains an open research challenge. Good results can been\\nachieved with state-of-the-art ML techniques, including Gradient-Boosting\\nMachines (GBMs) and Recurrent Neural Networks (RNNs). CryptoAnalytics is a\\nsoftware toolkit to easily train these models and make inference on up-to-date\\ncryptocoin trading price data, with facilities to fetch datasets from one of\\nthe main leading aggregator websites, i.e., CoinMarketCap, train models and\\ninfer the future trends. This software is implemented in Python. It relies on\\nPyTorch for the implementation of RNNs (LSTM and GRU), while for GBMs, it\\nleverages on XgBoost, LightGBM and CatBoost.\",\"PeriodicalId\":501309,\"journal\":{\"name\":\"arXiv - CS - Computational Engineering, Finance, and Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Engineering, Finance, and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Engineering, Finance, and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍 CryptoAnalytics,这是一款利用机器学习(ML)技术预测加密钱币价格的软件工具包。加密钱币是以特定交易价格交换的可交易数字资产。虽然历史已经证明了这种交易价格的极度波动性,但如何对交易所价格波动所产生的时间序列进行有效建模和预测,仍然是一项公开的研究挑战。使用最先进的 ML 技术,包括梯度提升机器(GBM)和循环神经网络(RNN),可以获得良好的结果。CryptoAnalytics 是一个软件工具包,可以轻松地训练这些模型,并对最新的加密钱币交易价格数据进行推断,它可以从一个主要的领先聚合网站(即 CoinMarketCap)获取数据集,训练模型并推断未来趋势。该软件用 Python 实现。它依靠 PyTorch 来实现 RNN(LSTM 和 GRU),而对于 GBM,它利用了 XgBoost、LightGBM 和 CatBoost。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CryptoAnalytics: Cryptocoins Price Forecasting with Machine Learning Techniques
This paper introduces CryptoAnalytics, a software toolkit for cryptocoins price forecasting with machine learning (ML) techniques. Cryptocoins are tradable digital assets exchanged for specific trading prices. While history has shown the extreme volatility of such trading prices, the ability to efficiently model and forecast the time series resulting from the exchange price volatility remains an open research challenge. Good results can been achieved with state-of-the-art ML techniques, including Gradient-Boosting Machines (GBMs) and Recurrent Neural Networks (RNNs). CryptoAnalytics is a software toolkit to easily train these models and make inference on up-to-date cryptocoin trading price data, with facilities to fetch datasets from one of the main leading aggregator websites, i.e., CoinMarketCap, train models and infer the future trends. This software is implemented in Python. It relies on PyTorch for the implementation of RNNs (LSTM and GRU), while for GBMs, it leverages on XgBoost, LightGBM and CatBoost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A generalized non-hourglass updated Lagrangian formulation for SPH solid dynamics A Knowledge-Inspired Hierarchical Physics-Informed Neural Network for Pipeline Hydraulic Transient Simulation Uncertainty Analysis of Limit Cycle Oscillations in Nonlinear Dynamical Systems with the Fourier Generalized Polynomial Chaos Expansion Micropolar elastoplasticity using a fast Fourier transform-based solver A differentiable structural analysis framework for high-performance design optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1