{"title":"植物多酚驱动的聚合-强化战略:超高负载原子分散铁钴双金属催化剂用于单线态氧主导的类芬顿反应","authors":"Yue Wang, Zhenglong Liu, Weilu Kang, Tielong Li* and Haitao Wang*, ","doi":"10.1021/acsestengg.4c0023710.1021/acsestengg.4c00237","DOIUrl":null,"url":null,"abstract":"<p >Recent progress has brought carbon-confined transition metal catalysts to the forefront as effective agents for Fenton-like reactions. However, achieving a stable integration of densely loaded and well-dispersed transition metals onto carbon support poses significant challenges. Herein, we introduce a plant polyphenol-driven polymerization-confinement method for the synthesis of a highly dispersed FeCo bimetallic catalyst (FeCo@NGB). Utilizing the chelating effect of tea polyphenols with metal ions and their subsequent polymerization and confinement offers a durable solution for stabilizing the FeCo bimetallic sites. The resulting FeCo@NGB demonstrates exceptional performance in activating peroxymonosulfate (PMS) for the swift degradation of tetracycline (TC), with a 99.5% reduction achieved in just 30 min, predominantly through a singlet oxygen (<sup>1</sup>O<sub>2</sub>)-driven pathway. Experimental and theoretical calculations highlight the pivotal role of atomically dispersed FeN<sub>4</sub>–CoN<sub>3</sub> sites in facilitating rapid electron transfer between the catalyst and PMS, thereby enhancing <sup>1</sup>O<sub>2</sub> production. This work not only advances the development of high-performance multiphase catalysts but also introduces a compelling strategy for water purification leveraging nonradical oxidative pathways.</p>","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plant Polyphenol-Driven Polymerization-Confinement Strategy toward Ultrahighly Loaded Atomically Dispersed FeCo Bimetallic Catalysts for Singlet Oxygen-Dominated Fenton-like Reactions\",\"authors\":\"Yue Wang, Zhenglong Liu, Weilu Kang, Tielong Li* and Haitao Wang*, \",\"doi\":\"10.1021/acsestengg.4c0023710.1021/acsestengg.4c00237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Recent progress has brought carbon-confined transition metal catalysts to the forefront as effective agents for Fenton-like reactions. However, achieving a stable integration of densely loaded and well-dispersed transition metals onto carbon support poses significant challenges. Herein, we introduce a plant polyphenol-driven polymerization-confinement method for the synthesis of a highly dispersed FeCo bimetallic catalyst (FeCo@NGB). Utilizing the chelating effect of tea polyphenols with metal ions and their subsequent polymerization and confinement offers a durable solution for stabilizing the FeCo bimetallic sites. The resulting FeCo@NGB demonstrates exceptional performance in activating peroxymonosulfate (PMS) for the swift degradation of tetracycline (TC), with a 99.5% reduction achieved in just 30 min, predominantly through a singlet oxygen (<sup>1</sup>O<sub>2</sub>)-driven pathway. Experimental and theoretical calculations highlight the pivotal role of atomically dispersed FeN<sub>4</sub>–CoN<sub>3</sub> sites in facilitating rapid electron transfer between the catalyst and PMS, thereby enhancing <sup>1</sup>O<sub>2</sub> production. This work not only advances the development of high-performance multiphase catalysts but also introduces a compelling strategy for water purification leveraging nonradical oxidative pathways.</p>\",\"PeriodicalId\":7008,\"journal\":{\"name\":\"ACS ES&T engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS ES&T engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsestengg.4c00237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestengg.4c00237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Plant Polyphenol-Driven Polymerization-Confinement Strategy toward Ultrahighly Loaded Atomically Dispersed FeCo Bimetallic Catalysts for Singlet Oxygen-Dominated Fenton-like Reactions
Recent progress has brought carbon-confined transition metal catalysts to the forefront as effective agents for Fenton-like reactions. However, achieving a stable integration of densely loaded and well-dispersed transition metals onto carbon support poses significant challenges. Herein, we introduce a plant polyphenol-driven polymerization-confinement method for the synthesis of a highly dispersed FeCo bimetallic catalyst (FeCo@NGB). Utilizing the chelating effect of tea polyphenols with metal ions and their subsequent polymerization and confinement offers a durable solution for stabilizing the FeCo bimetallic sites. The resulting FeCo@NGB demonstrates exceptional performance in activating peroxymonosulfate (PMS) for the swift degradation of tetracycline (TC), with a 99.5% reduction achieved in just 30 min, predominantly through a singlet oxygen (1O2)-driven pathway. Experimental and theoretical calculations highlight the pivotal role of atomically dispersed FeN4–CoN3 sites in facilitating rapid electron transfer between the catalyst and PMS, thereby enhancing 1O2 production. This work not only advances the development of high-performance multiphase catalysts but also introduces a compelling strategy for water purification leveraging nonradical oxidative pathways.
期刊介绍:
ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources.
The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope.
Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.