传递函数(TTF):体积可视化中转移函数优化的指导方法

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Computers & Graphics-Uk Pub Date : 2024-09-04 DOI:10.1016/j.cag.2024.104067
{"title":"传递函数(TTF):体积可视化中转移函数优化的指导方法","authors":"","doi":"10.1016/j.cag.2024.104067","DOIUrl":null,"url":null,"abstract":"<div><p>In volume visualization, a transfer function tailored for one volume usually does not work for other similar volumes without careful tuning. This process can be tedious and time-consuming for a large set of volumes. In this work, we present a novel approach to transfer function optimization based on the differentiable volume rendering of a reference volume and its corresponding transfer function. Using two fully connected neural networks, our approach learns a continuous 2D separable transfer function that visualizes the features of interest with consistent visual properties between the volumes. Because many volume visualization software packages support separable transfer functions, users can export the optimized transfer function into a domain-specific application for further interactions. In tandem with domain experts’ input and assessments, we present two use cases to demonstrate the effectiveness of our approach. The first use case tracks the effect of an asteroid blast near the ocean surface. In this application, a volume and its corresponding transfer function seed our method, cascading transfer function optimization for the proceeding time steps. The second use case focuses on the visualization of white matter, gray matter, and cerebrospinal fluid in magnetic resonance imaging (MRI) volumes. We optimize an intensity-gradient transfer function for one volume from its segmentation. Then we use these results to visualize other brain volumes with different intensity ranges acquired on different MRI machines.</p></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0097849324002024/pdfft?md5=a9712309d212a1aa1bbb843ba60a6d2c&pid=1-s2.0-S0097849324002024-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Transferring transfer functions (TTF): A guided approach to transfer function optimization in volume visualization\",\"authors\":\"\",\"doi\":\"10.1016/j.cag.2024.104067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In volume visualization, a transfer function tailored for one volume usually does not work for other similar volumes without careful tuning. This process can be tedious and time-consuming for a large set of volumes. In this work, we present a novel approach to transfer function optimization based on the differentiable volume rendering of a reference volume and its corresponding transfer function. Using two fully connected neural networks, our approach learns a continuous 2D separable transfer function that visualizes the features of interest with consistent visual properties between the volumes. Because many volume visualization software packages support separable transfer functions, users can export the optimized transfer function into a domain-specific application for further interactions. In tandem with domain experts’ input and assessments, we present two use cases to demonstrate the effectiveness of our approach. The first use case tracks the effect of an asteroid blast near the ocean surface. In this application, a volume and its corresponding transfer function seed our method, cascading transfer function optimization for the proceeding time steps. The second use case focuses on the visualization of white matter, gray matter, and cerebrospinal fluid in magnetic resonance imaging (MRI) volumes. We optimize an intensity-gradient transfer function for one volume from its segmentation. Then we use these results to visualize other brain volumes with different intensity ranges acquired on different MRI machines.</p></div>\",\"PeriodicalId\":50628,\"journal\":{\"name\":\"Computers & Graphics-Uk\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0097849324002024/pdfft?md5=a9712309d212a1aa1bbb843ba60a6d2c&pid=1-s2.0-S0097849324002024-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Graphics-Uk\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097849324002024\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849324002024","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

在体积可视化中,如果不仔细调整,为一个体积量身定制的传递函数通常不适用于其他类似的体积。对于大量的体积集来说,这一过程可能既繁琐又耗时。在这项工作中,我们提出了一种基于参考体的可变体渲染及其相应传递函数的传递函数优化新方法。通过使用两个全连接的神经网络,我们的方法可以学习到连续的二维可分离传递函数,该传递函数可以将感兴趣的特征可视化,并且各体之间具有一致的视觉特性。由于许多体积可视化软件包都支持可分离传递函数,因此用户可以将优化后的传递函数导出到特定领域的应用程序中,以便进一步交互。结合领域专家的意见和评估,我们介绍了两个使用案例,以展示我们方法的有效性。第一个用例是追踪海洋表面附近小行星爆炸的影响。在该应用中,一个体积及其相应的传递函数为我们的方法播下了种子,并在接下来的时间步骤中对传递函数进行了级联优化。第二个用例侧重于磁共振成像(MRI)体积中白质、灰质和脑脊液的可视化。我们通过对一个容积的分割来优化其强度梯度传递函数。然后,我们利用这些结果来可视化在不同核磁共振成像仪上获取的具有不同强度范围的其他脑体积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transferring transfer functions (TTF): A guided approach to transfer function optimization in volume visualization

In volume visualization, a transfer function tailored for one volume usually does not work for other similar volumes without careful tuning. This process can be tedious and time-consuming for a large set of volumes. In this work, we present a novel approach to transfer function optimization based on the differentiable volume rendering of a reference volume and its corresponding transfer function. Using two fully connected neural networks, our approach learns a continuous 2D separable transfer function that visualizes the features of interest with consistent visual properties between the volumes. Because many volume visualization software packages support separable transfer functions, users can export the optimized transfer function into a domain-specific application for further interactions. In tandem with domain experts’ input and assessments, we present two use cases to demonstrate the effectiveness of our approach. The first use case tracks the effect of an asteroid blast near the ocean surface. In this application, a volume and its corresponding transfer function seed our method, cascading transfer function optimization for the proceeding time steps. The second use case focuses on the visualization of white matter, gray matter, and cerebrospinal fluid in magnetic resonance imaging (MRI) volumes. We optimize an intensity-gradient transfer function for one volume from its segmentation. Then we use these results to visualize other brain volumes with different intensity ranges acquired on different MRI machines.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Graphics-Uk
Computers & Graphics-Uk 工程技术-计算机:软件工程
CiteScore
5.30
自引率
12.00%
发文量
173
审稿时长
38 days
期刊介绍: Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on: 1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains. 2. State-of-the-art papers on late-breaking, cutting-edge research on CG. 3. Information on innovative uses of graphics principles and technologies. 4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.
期刊最新文献
ADA-SCMS Net: A self-supervised clustering-based 3D mesh segmentation network with aggregation dual autoencoder Comparative analysis of spatiotemporal playback manipulation on virtual reality training for External Ventricular Drainage Advances in vision-based deep learning methods for interacting hands reconstruction: A survey An immersive labeling method for large point clouds Diverse non-homogeneous texture synthesis from a single exemplar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1