Peng Zhang , Jiamei Zhan , Kexin Sun , Jie Zhang , Meng Wei , Kexin Wang
{"title":"GIC-Flow:通过大变形下虚拟试穿的全局信息相关性进行外观流估计","authors":"Peng Zhang , Jiamei Zhan , Kexin Sun , Jie Zhang , Meng Wei , Kexin Wang","doi":"10.1016/j.cag.2024.104071","DOIUrl":null,"url":null,"abstract":"<div><p>The primary aim of image-based virtual try-on is to seamlessly deform the target garment image to align with the human body. Owing to the inherent non-rigid nature of garments, current methods prioritise flexible deformation through appearance flow with high degrees of freedom. However, existing appearance flow estimation methods solely focus on the correlation of local feature information. While this strategy successfully avoids the extensive computational effort associated with the direct computation of the global information correlation of feature maps, it leads to challenges in garments adapting to large deformation scenarios. To overcome these limitations, we propose the GIC-Flow framework, which obtains appearance flow by calculating the global information correlation while reducing computational regression. Specifically, our proposed global streak information matching module is designed to decompose the appearance flow into horizontal and vertical vectors, effectively propagating global information in both directions. This innovative approach considerably diminishes computational requirements, contributing to an enhanced and efficient process. In addition, to ensure the accurate deformation of local texture in garments, we propose the local aggregate information matching module to aggregate information from the nearest neighbours before computing the global correlation and to enhance weak semantic information. Comprehensive experiments conducted using our method on the VITON and VITON-HD datasets show that GIC-Flow outperforms existing state-of-the-art algorithms, particularly in cases involving complex garment deformation.</p></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"124 ","pages":"Article 104071"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GIC-Flow: Appearance flow estimation via global information correlation for virtual try-on under large deformation\",\"authors\":\"Peng Zhang , Jiamei Zhan , Kexin Sun , Jie Zhang , Meng Wei , Kexin Wang\",\"doi\":\"10.1016/j.cag.2024.104071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The primary aim of image-based virtual try-on is to seamlessly deform the target garment image to align with the human body. Owing to the inherent non-rigid nature of garments, current methods prioritise flexible deformation through appearance flow with high degrees of freedom. However, existing appearance flow estimation methods solely focus on the correlation of local feature information. While this strategy successfully avoids the extensive computational effort associated with the direct computation of the global information correlation of feature maps, it leads to challenges in garments adapting to large deformation scenarios. To overcome these limitations, we propose the GIC-Flow framework, which obtains appearance flow by calculating the global information correlation while reducing computational regression. Specifically, our proposed global streak information matching module is designed to decompose the appearance flow into horizontal and vertical vectors, effectively propagating global information in both directions. This innovative approach considerably diminishes computational requirements, contributing to an enhanced and efficient process. In addition, to ensure the accurate deformation of local texture in garments, we propose the local aggregate information matching module to aggregate information from the nearest neighbours before computing the global correlation and to enhance weak semantic information. Comprehensive experiments conducted using our method on the VITON and VITON-HD datasets show that GIC-Flow outperforms existing state-of-the-art algorithms, particularly in cases involving complex garment deformation.</p></div>\",\"PeriodicalId\":50628,\"journal\":{\"name\":\"Computers & Graphics-Uk\",\"volume\":\"124 \",\"pages\":\"Article 104071\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Graphics-Uk\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097849324002061\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849324002061","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
GIC-Flow: Appearance flow estimation via global information correlation for virtual try-on under large deformation
The primary aim of image-based virtual try-on is to seamlessly deform the target garment image to align with the human body. Owing to the inherent non-rigid nature of garments, current methods prioritise flexible deformation through appearance flow with high degrees of freedom. However, existing appearance flow estimation methods solely focus on the correlation of local feature information. While this strategy successfully avoids the extensive computational effort associated with the direct computation of the global information correlation of feature maps, it leads to challenges in garments adapting to large deformation scenarios. To overcome these limitations, we propose the GIC-Flow framework, which obtains appearance flow by calculating the global information correlation while reducing computational regression. Specifically, our proposed global streak information matching module is designed to decompose the appearance flow into horizontal and vertical vectors, effectively propagating global information in both directions. This innovative approach considerably diminishes computational requirements, contributing to an enhanced and efficient process. In addition, to ensure the accurate deformation of local texture in garments, we propose the local aggregate information matching module to aggregate information from the nearest neighbours before computing the global correlation and to enhance weak semantic information. Comprehensive experiments conducted using our method on the VITON and VITON-HD datasets show that GIC-Flow outperforms existing state-of-the-art algorithms, particularly in cases involving complex garment deformation.
期刊介绍:
Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on:
1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains.
2. State-of-the-art papers on late-breaking, cutting-edge research on CG.
3. Information on innovative uses of graphics principles and technologies.
4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.