E. Hernández-Alhambra , P. Guiu , A. Ferrer-Mairal , M.A. Martínez , B. Calvo , J. Grasa , M.L. Salvador
{"title":"用数值模型预测汉堡平底锅烹饪过程中的最佳翻炒条件","authors":"E. Hernández-Alhambra , P. Guiu , A. Ferrer-Mairal , M.A. Martínez , B. Calvo , J. Grasa , M.L. Salvador","doi":"10.1016/j.jfoodeng.2024.112315","DOIUrl":null,"url":null,"abstract":"<div><p>This study analyzes the influence of the number of flips on the cooking performance of burgers by heating contact using results from both experimental test and computational simulation. The analysis employs a previously developed multiphysics model that accounts for heat and moisture transfer as well as product deformation. The turning process was simulated considering two heat sources representing the cooking pan that are alternately activated and deactivated to heat either surface of the product. Furthermore, a set of experiments were carried out to validate the model outcomes recording data of temperature at the center and upper surface of the burger, weight loss, and shrinkage at different number of flips. When performing only one flip, great moisture expelling was observed at the top surface, while multiple flips facilitates moisture retention, reducing cooking losses and shrinkage since it allows for a reduction in cooking time to reach the desired temperature. However, more than five flips do not significantly improve these effects.</p></div>","PeriodicalId":359,"journal":{"name":"Journal of Food Engineering","volume":"387 ","pages":"Article 112315"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0260877424003819/pdfft?md5=e0f581b68204fd5e9eb71c59daa9cd82&pid=1-s2.0-S0260877424003819-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Predicting optimal flipping conditions during burger pan cooking with a numerical model\",\"authors\":\"E. Hernández-Alhambra , P. Guiu , A. Ferrer-Mairal , M.A. Martínez , B. Calvo , J. Grasa , M.L. Salvador\",\"doi\":\"10.1016/j.jfoodeng.2024.112315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study analyzes the influence of the number of flips on the cooking performance of burgers by heating contact using results from both experimental test and computational simulation. The analysis employs a previously developed multiphysics model that accounts for heat and moisture transfer as well as product deformation. The turning process was simulated considering two heat sources representing the cooking pan that are alternately activated and deactivated to heat either surface of the product. Furthermore, a set of experiments were carried out to validate the model outcomes recording data of temperature at the center and upper surface of the burger, weight loss, and shrinkage at different number of flips. When performing only one flip, great moisture expelling was observed at the top surface, while multiple flips facilitates moisture retention, reducing cooking losses and shrinkage since it allows for a reduction in cooking time to reach the desired temperature. However, more than five flips do not significantly improve these effects.</p></div>\",\"PeriodicalId\":359,\"journal\":{\"name\":\"Journal of Food Engineering\",\"volume\":\"387 \",\"pages\":\"Article 112315\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0260877424003819/pdfft?md5=e0f581b68204fd5e9eb71c59daa9cd82&pid=1-s2.0-S0260877424003819-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0260877424003819\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0260877424003819","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Predicting optimal flipping conditions during burger pan cooking with a numerical model
This study analyzes the influence of the number of flips on the cooking performance of burgers by heating contact using results from both experimental test and computational simulation. The analysis employs a previously developed multiphysics model that accounts for heat and moisture transfer as well as product deformation. The turning process was simulated considering two heat sources representing the cooking pan that are alternately activated and deactivated to heat either surface of the product. Furthermore, a set of experiments were carried out to validate the model outcomes recording data of temperature at the center and upper surface of the burger, weight loss, and shrinkage at different number of flips. When performing only one flip, great moisture expelling was observed at the top surface, while multiple flips facilitates moisture retention, reducing cooking losses and shrinkage since it allows for a reduction in cooking time to reach the desired temperature. However, more than five flips do not significantly improve these effects.
期刊介绍:
The journal publishes original research and review papers on any subject at the interface between food and engineering, particularly those of relevance to industry, including:
Engineering properties of foods, food physics and physical chemistry; processing, measurement, control, packaging, storage and distribution; engineering aspects of the design and production of novel foods and of food service and catering; design and operation of food processes, plant and equipment; economics of food engineering, including the economics of alternative processes.
Accounts of food engineering achievements are of particular value.