用 NaHCO3 调节低温界面聚合,实现高性能超薄纳滤膜

IF 4.1 2区 工程技术 Q2 ENGINEERING, CHEMICAL Chemical Engineering Science Pub Date : 2024-09-12 DOI:10.1016/j.ces.2024.120723
{"title":"用 NaHCO3 调节低温界面聚合,实现高性能超薄纳滤膜","authors":"","doi":"10.1016/j.ces.2024.120723","DOIUrl":null,"url":null,"abstract":"<div><p>Conventional interfacial polymerization (IP) encounters significant challenges in achieving the desired nanofiltration (NF) membrane structure, owing to uncontrolled diffusion and ultrafast polymerization. Our study introduced carbonates into the low-temperature interfacial polymerization (LTIP) process to precisely regulate the diffusion of amine monomers and polymerization kinetics. Carbonates in the aqueous phase restrict the diffusion of amine monomers while promoting the generation of nanobubbles. Further utilization of the low-temperature oil phase not only retards polymerization but also facilitates the formation of foam nanostructures in the polyamide layer. Density functional theory calculations and molecular dynamics simulations revealed the mechanisms underlying the regulation of amine monomer diffusion and gas-bubble release by carbonates and LTIP. The fabricated membrane has a smoother, ultrathin separation layer while maintaining a high permeability of 35.0 L·m<sup>−2</sup>·h<sup>−1</sup>·bar<sup>−1</sup> (nearly doubled compared with the pristine membrane) and high Na<sub>2</sub>SO<sub>4</sub> rejection of 99.5 %. This study confirms the practicality of the carbonate-modulated LTIP strategy.</p></div>","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0009250924010236/pdfft?md5=f096ddbd32582af1873f1d35e0b13f83&pid=1-s2.0-S0009250924010236-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Modulating low-temperature interfacial polymerization with NaHCO3 for high-performance ultrathin nanofiltration membranes\",\"authors\":\"\",\"doi\":\"10.1016/j.ces.2024.120723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Conventional interfacial polymerization (IP) encounters significant challenges in achieving the desired nanofiltration (NF) membrane structure, owing to uncontrolled diffusion and ultrafast polymerization. Our study introduced carbonates into the low-temperature interfacial polymerization (LTIP) process to precisely regulate the diffusion of amine monomers and polymerization kinetics. Carbonates in the aqueous phase restrict the diffusion of amine monomers while promoting the generation of nanobubbles. Further utilization of the low-temperature oil phase not only retards polymerization but also facilitates the formation of foam nanostructures in the polyamide layer. Density functional theory calculations and molecular dynamics simulations revealed the mechanisms underlying the regulation of amine monomer diffusion and gas-bubble release by carbonates and LTIP. The fabricated membrane has a smoother, ultrathin separation layer while maintaining a high permeability of 35.0 L·m<sup>−2</sup>·h<sup>−1</sup>·bar<sup>−1</sup> (nearly doubled compared with the pristine membrane) and high Na<sub>2</sub>SO<sub>4</sub> rejection of 99.5 %. This study confirms the practicality of the carbonate-modulated LTIP strategy.</p></div>\",\"PeriodicalId\":271,\"journal\":{\"name\":\"Chemical Engineering Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0009250924010236/pdfft?md5=f096ddbd32582af1873f1d35e0b13f83&pid=1-s2.0-S0009250924010236-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009250924010236\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009250924010236","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于不受控制的扩散和超快聚合,传统的界面聚合(IP)在实现理想的纳滤膜(NF)结构方面遇到了巨大挑战。我们的研究在低温界面聚合(LTIP)过程中引入碳酸盐,以精确调节胺单体的扩散和聚合动力学。水相中的碳酸盐限制了胺单体的扩散,同时促进了纳米气泡的生成。进一步利用低温油相不仅能延缓聚合,还能促进聚酰胺层中泡沫纳米结构的形成。密度泛函理论计算和分子动力学模拟揭示了碳酸盐和 LTIP 对胺单体扩散和气泡释放的调节机制。制成的膜具有更平滑的超薄分离层,同时保持了 35.0 L-m-2-h-1-bar-1 的高渗透率(与原始膜相比几乎翻了一番)和 99.5% 的高 Na2SO4 阻隔率。这项研究证实了碳酸盐调制 LTIP 策略的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modulating low-temperature interfacial polymerization with NaHCO3 for high-performance ultrathin nanofiltration membranes

Conventional interfacial polymerization (IP) encounters significant challenges in achieving the desired nanofiltration (NF) membrane structure, owing to uncontrolled diffusion and ultrafast polymerization. Our study introduced carbonates into the low-temperature interfacial polymerization (LTIP) process to precisely regulate the diffusion of amine monomers and polymerization kinetics. Carbonates in the aqueous phase restrict the diffusion of amine monomers while promoting the generation of nanobubbles. Further utilization of the low-temperature oil phase not only retards polymerization but also facilitates the formation of foam nanostructures in the polyamide layer. Density functional theory calculations and molecular dynamics simulations revealed the mechanisms underlying the regulation of amine monomer diffusion and gas-bubble release by carbonates and LTIP. The fabricated membrane has a smoother, ultrathin separation layer while maintaining a high permeability of 35.0 L·m−2·h−1·bar−1 (nearly doubled compared with the pristine membrane) and high Na2SO4 rejection of 99.5 %. This study confirms the practicality of the carbonate-modulated LTIP strategy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Science
Chemical Engineering Science 工程技术-工程:化工
CiteScore
7.50
自引率
8.50%
发文量
1025
审稿时长
50 days
期刊介绍: Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline. Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.
期刊最新文献
Ketone-based conjugated microporous poly(aniline)s for the ultradeep separation of heavy metal ions Bridging uncertainty gaps with artificial intelligence-assisted syngas precise prediction in coal gasification A hybrid algorithm framework for heat exchanger networks synthesis considering the optimal locations of multiple utilities Modulating low-temperature interfacial polymerization with NaHCO3 for high-performance ultrathin nanofiltration membranes Analytical prediction of the formation factor for anisotropic mono-sized unconsolidated porous media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1