极地涡旋喷流对 2016 年 1 月 11-14 日北部中间层和热大气层二级和高阶重力波的作用

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Journal of Geophysical Research: Space Physics Pub Date : 2024-09-13 DOI:10.1029/2024JA032521
Sharon L. Vadas, Erich Becker, Katrina Bossert, Yuta Hozumi, Gunter Stober, V. Lynn Harvey, Gerd Baumgarten, Lars Hoffmann
{"title":"极地涡旋喷流对 2016 年 1 月 11-14 日北部中间层和热大气层二级和高阶重力波的作用","authors":"Sharon L. Vadas,&nbsp;Erich Becker,&nbsp;Katrina Bossert,&nbsp;Yuta Hozumi,&nbsp;Gunter Stober,&nbsp;V. Lynn Harvey,&nbsp;Gerd Baumgarten,&nbsp;Lars Hoffmann","doi":"10.1029/2024JA032521","DOIUrl":null,"url":null,"abstract":"<p>We analyze the gravity waves (GWs) from the ground to the thermosphere during 11–14 January 2016 using the nudged HI Altitude Mechanistic general Circulation Model. We find that the entrance, core and exit regions of the polar vortex jet are important for generating primary GWs and amplifying GWs from below. These primary GWs dissipate in the upper stratosphere/lower mesosphere and deposit momentum there; the atmosphere responds by generating secondary GWs. This process is repeated, resulting in medium to large-scale higher-order, thermospheric GWs. We find that the amplitudes of the secondary/higher-order GWs from sources below the polar vortex jet are exponentially magnified. The higher-order, thermospheric GWs have concentric ring, arc-like and planar structures, and spread out latitudinally to 10 − 90°N. Those GWs with the largest amplitudes propagate against the background wind. Some of the higher-order GWs generated over Europe propagate over the Arctic region then southward over the US to ∼15–20°N daily at ∼14 − 24 UT (∼9 − 16 LT) due to the favorable background wind. These GWs have horizontal wavelengths <i>λ</i><sub><i>H</i></sub> ∼ 200 − 2,200 km, horizontal phase speeds <i>c</i><sub><i>H</i></sub> ∼ 165 − 260 m/s, and periods <i>τ</i><sub><i>r</i></sub> ∼ 0.3 − 2.4 hr. Such GWs could be misidentified as being generated by auroral activity. The large-scale, higher-order GWs are generated in the lower thermosphere and propagate southwestward daily across the northern mid-thermosphere at ∼8–16 LT with <i>λ</i><sub><i>H</i></sub> ∼ 3,000 km and <i>c</i><sub><i>H</i></sub> ∼ 650 m/s. We compare the simulated GWs with those observed by AIRS, VIIRS/DNB, lidar and meteor radars and find reasonable to good agreement. Thus the polar vortex jet is important for facilitating the global generation of medium to large-scale, higher-order thermospheric GWs via multi-step vertical coupling.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of the Polar Vortex Jet for Secondary and Higher-Order Gravity Waves in the Northern Mesosphere and Thermosphere During 11–14 January 2016\",\"authors\":\"Sharon L. Vadas,&nbsp;Erich Becker,&nbsp;Katrina Bossert,&nbsp;Yuta Hozumi,&nbsp;Gunter Stober,&nbsp;V. Lynn Harvey,&nbsp;Gerd Baumgarten,&nbsp;Lars Hoffmann\",\"doi\":\"10.1029/2024JA032521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We analyze the gravity waves (GWs) from the ground to the thermosphere during 11–14 January 2016 using the nudged HI Altitude Mechanistic general Circulation Model. We find that the entrance, core and exit regions of the polar vortex jet are important for generating primary GWs and amplifying GWs from below. These primary GWs dissipate in the upper stratosphere/lower mesosphere and deposit momentum there; the atmosphere responds by generating secondary GWs. This process is repeated, resulting in medium to large-scale higher-order, thermospheric GWs. We find that the amplitudes of the secondary/higher-order GWs from sources below the polar vortex jet are exponentially magnified. The higher-order, thermospheric GWs have concentric ring, arc-like and planar structures, and spread out latitudinally to 10 − 90°N. Those GWs with the largest amplitudes propagate against the background wind. Some of the higher-order GWs generated over Europe propagate over the Arctic region then southward over the US to ∼15–20°N daily at ∼14 − 24 UT (∼9 − 16 LT) due to the favorable background wind. These GWs have horizontal wavelengths <i>λ</i><sub><i>H</i></sub> ∼ 200 − 2,200 km, horizontal phase speeds <i>c</i><sub><i>H</i></sub> ∼ 165 − 260 m/s, and periods <i>τ</i><sub><i>r</i></sub> ∼ 0.3 − 2.4 hr. Such GWs could be misidentified as being generated by auroral activity. The large-scale, higher-order GWs are generated in the lower thermosphere and propagate southwestward daily across the northern mid-thermosphere at ∼8–16 LT with <i>λ</i><sub><i>H</i></sub> ∼ 3,000 km and <i>c</i><sub><i>H</i></sub> ∼ 650 m/s. We compare the simulated GWs with those observed by AIRS, VIIRS/DNB, lidar and meteor radars and find reasonable to good agreement. Thus the polar vortex jet is important for facilitating the global generation of medium to large-scale, higher-order thermospheric GWs via multi-step vertical coupling.</p>\",\"PeriodicalId\":15894,\"journal\":{\"name\":\"Journal of Geophysical Research: Space Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Space Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JA032521\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA032521","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们利用推移高空机制性大气环流模式分析了2016年1月11-14日期间从地面到热层的重力波(GWs)。我们发现,极地涡旋喷流的入口、核心和出口区域对于产生初级重力波和放大来自下方的重力波非常重要。这些初级全球大气环流在平流层上部/中间层下部消散,并在那里沉积动量;大气层通过产生次级全球大气环流做出反应。这一过程不断重复,最终产生中到大尺度的高阶热层 GW。我们发现,来自极地涡旋喷流以下来源的次级/高阶全球大气环流的振幅呈指数放大。高阶热层全球大气环流具有同心环形、弧形和平面结构,纬度分布在 10 - 90°N 之间。振幅最大的全球大气环流逆背景风传播。在欧洲上空产生的一些高阶全球大气环流,在有利的背景风的作用下,每天在 14 - 24 UT(9 - 16 LT)经过北极地区,然后在美国上空向南传播到 15 - 20°N。这些全球大气环流的水平波长 λH ∼ 200 - 2,200 公里,水平相位速度 cH ∼ 165 - 260 米/秒,周期 τr ∼ 0.3 - 2.4 小时。大尺度、高阶全球大气环流产生于热大气层下部,每天以 ∼8-16 LT 的速度向西南方向传播,穿过热大气层北部中层,λH ∼ 3,000 km,cH ∼ 650 m/s。我们将模拟的极地气流与 AIRS、VIIRS/DNB、激光雷达和流星雷达观测到的极地气流进行了比较,发现两者的吻合度很高。因此,极地涡旋喷流对于通过多步垂直耦合促进全球产生中到大尺度、高阶热层全球大气风暴非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Role of the Polar Vortex Jet for Secondary and Higher-Order Gravity Waves in the Northern Mesosphere and Thermosphere During 11–14 January 2016

We analyze the gravity waves (GWs) from the ground to the thermosphere during 11–14 January 2016 using the nudged HI Altitude Mechanistic general Circulation Model. We find that the entrance, core and exit regions of the polar vortex jet are important for generating primary GWs and amplifying GWs from below. These primary GWs dissipate in the upper stratosphere/lower mesosphere and deposit momentum there; the atmosphere responds by generating secondary GWs. This process is repeated, resulting in medium to large-scale higher-order, thermospheric GWs. We find that the amplitudes of the secondary/higher-order GWs from sources below the polar vortex jet are exponentially magnified. The higher-order, thermospheric GWs have concentric ring, arc-like and planar structures, and spread out latitudinally to 10 − 90°N. Those GWs with the largest amplitudes propagate against the background wind. Some of the higher-order GWs generated over Europe propagate over the Arctic region then southward over the US to ∼15–20°N daily at ∼14 − 24 UT (∼9 − 16 LT) due to the favorable background wind. These GWs have horizontal wavelengths λH ∼ 200 − 2,200 km, horizontal phase speeds cH ∼ 165 − 260 m/s, and periods τr ∼ 0.3 − 2.4 hr. Such GWs could be misidentified as being generated by auroral activity. The large-scale, higher-order GWs are generated in the lower thermosphere and propagate southwestward daily across the northern mid-thermosphere at ∼8–16 LT with λH ∼ 3,000 km and cH ∼ 650 m/s. We compare the simulated GWs with those observed by AIRS, VIIRS/DNB, lidar and meteor radars and find reasonable to good agreement. Thus the polar vortex jet is important for facilitating the global generation of medium to large-scale, higher-order thermospheric GWs via multi-step vertical coupling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
期刊最新文献
Nightside Electron Precipitation Patterns as Observed by ELFIN and CIRBE CubeSats Martian Ionosphere-Thermosphere Coupling in Longitude Structures: Statistical Results for the Main Ionization Peak Height Earthward-Tailward Asymmetry of Plasma Temperature in Reconnection Outflow in Earth's Magnetotail Electron Scattering Due To Asymmetric Drift-Orbit Bifurcation: Geometric Jumps of Adiabatic Invariant Test Particle Simulations of the Butterfly Distribution of Relativistic Electrons in Magnetic Dips
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1