{"title":"基于 OTFS 的 6G LEO 卫星通信系统的多卫星协调传输","authors":"Zhengquan Zhang;Yuchen Wu;Zheng Ma;Xianfu Lei;Lei Lei;Zhiqiang Wei","doi":"10.1109/JSAC.2024.3460108","DOIUrl":null,"url":null,"abstract":"Low Earth orbit (LEO) satellite communications are the key enabler for achieving 6G ubiquitous connectivity. With the rapid progress of small satellite technology and the surging demands on direct-to-satellite services, a global wave of building LEO satellite constellations has been arisen. LEO satellite communications are the typical high mobility scenarios and suffer from severe Doppler effects. To overcome this challenge, orthogonal time frequency space (OTFS)-based LEO satellite communications have recently been studied, which exploit high mobility to obtain delay-Doppler diversity. However, due to limited satellite transmit power and very long propagation distance, the satellite-to-ground (S2G) links are very weak, and also suffer from inter-beam and inter-satellite interference. In this paper, we study coordinated multi-satellite transmission for OTFS-based LEO satellite communications to significantly improve the performance of S2G transmission, through enabling multiple satellites to cooperatively serve ground users. Furthermore, considering different delay and Doppler offsets among cooperative LEO satellites, we propose simultaneous pilots-based aggregate channel estimation (SP-ACE) scheme to improve channel estimation, which aggregately estimates the channels in S2G joint transmission by regarding the channels of all cooperative links as a single channel. Besides integer Doppler, we also consider fractional Doppler and propose three-stage peak-searching correlation (PSC)-based fractional Doppler estimation. Finally, simulations are conducted and the results demonstrate the effectiveness of the proposed coordinated multi-satellite transmission scheme, SP-ACE and three-stage PSC fractional Doppler estimation schemes.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"43 1","pages":"156-170"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coordinated Multi-Satellite Transmission for OTFS-Based 6G LEO Satellite Communication Systems\",\"authors\":\"Zhengquan Zhang;Yuchen Wu;Zheng Ma;Xianfu Lei;Lei Lei;Zhiqiang Wei\",\"doi\":\"10.1109/JSAC.2024.3460108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low Earth orbit (LEO) satellite communications are the key enabler for achieving 6G ubiquitous connectivity. With the rapid progress of small satellite technology and the surging demands on direct-to-satellite services, a global wave of building LEO satellite constellations has been arisen. LEO satellite communications are the typical high mobility scenarios and suffer from severe Doppler effects. To overcome this challenge, orthogonal time frequency space (OTFS)-based LEO satellite communications have recently been studied, which exploit high mobility to obtain delay-Doppler diversity. However, due to limited satellite transmit power and very long propagation distance, the satellite-to-ground (S2G) links are very weak, and also suffer from inter-beam and inter-satellite interference. In this paper, we study coordinated multi-satellite transmission for OTFS-based LEO satellite communications to significantly improve the performance of S2G transmission, through enabling multiple satellites to cooperatively serve ground users. Furthermore, considering different delay and Doppler offsets among cooperative LEO satellites, we propose simultaneous pilots-based aggregate channel estimation (SP-ACE) scheme to improve channel estimation, which aggregately estimates the channels in S2G joint transmission by regarding the channels of all cooperative links as a single channel. Besides integer Doppler, we also consider fractional Doppler and propose three-stage peak-searching correlation (PSC)-based fractional Doppler estimation. Finally, simulations are conducted and the results demonstrate the effectiveness of the proposed coordinated multi-satellite transmission scheme, SP-ACE and three-stage PSC fractional Doppler estimation schemes.\",\"PeriodicalId\":73294,\"journal\":{\"name\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"volume\":\"43 1\",\"pages\":\"156-170\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10679987/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10679987/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coordinated Multi-Satellite Transmission for OTFS-Based 6G LEO Satellite Communication Systems
Low Earth orbit (LEO) satellite communications are the key enabler for achieving 6G ubiquitous connectivity. With the rapid progress of small satellite technology and the surging demands on direct-to-satellite services, a global wave of building LEO satellite constellations has been arisen. LEO satellite communications are the typical high mobility scenarios and suffer from severe Doppler effects. To overcome this challenge, orthogonal time frequency space (OTFS)-based LEO satellite communications have recently been studied, which exploit high mobility to obtain delay-Doppler diversity. However, due to limited satellite transmit power and very long propagation distance, the satellite-to-ground (S2G) links are very weak, and also suffer from inter-beam and inter-satellite interference. In this paper, we study coordinated multi-satellite transmission for OTFS-based LEO satellite communications to significantly improve the performance of S2G transmission, through enabling multiple satellites to cooperatively serve ground users. Furthermore, considering different delay and Doppler offsets among cooperative LEO satellites, we propose simultaneous pilots-based aggregate channel estimation (SP-ACE) scheme to improve channel estimation, which aggregately estimates the channels in S2G joint transmission by regarding the channels of all cooperative links as a single channel. Besides integer Doppler, we also consider fractional Doppler and propose three-stage peak-searching correlation (PSC)-based fractional Doppler estimation. Finally, simulations are conducted and the results demonstrate the effectiveness of the proposed coordinated multi-satellite transmission scheme, SP-ACE and three-stage PSC fractional Doppler estimation schemes.