{"title":"无人机移动边缘计算网络中的联合内容缓存、服务安置和任务卸载","authors":"Youhan Zhao;Chenxi Liu;Xiaoling Hu;Jianhua He;Mugen Peng;Derrick Wing Kwan Ng;Tony Q. S. Quek","doi":"10.1109/JSAC.2024.3460049","DOIUrl":null,"url":null,"abstract":"In this paper, we consider an unmanned aerial vehicle (UAV)-enabled mobile edge computing (MEC) network, where multiple UAVs with caching and computation functionalities are deployed to satisfy the heterogeneous content and service requests from the user equipments (UEs). In order to comprehensively characterize the capability of our considered network in satisfying the UEs’ requests, we define the weighted sum of the content cache hit ratio and the service delay shrinkage ratio as the average quality-of-experience (QoE) of our network and adopt it as the performance metric. Through analysis, we show how the average QoE of our network is dependent on the content cache and service placement decisions at the UAVs, as well as the computation task offloading decisions at the UEs, thus enabling us to formulate an average QoE maximization problem, subject to practical constraints on the UAVs’ caching and computation capabilities. To solve this NP-hard problem, we decompose it into two sub-problems, namely, the content cache and service placement optimization sub-problem and the task offloading optimization sub-problem. Gibbs sampling-based and matching game-based algorithms are proposed to efficiently solve these sub-problems iteratively. Via numerical results, we validate the effectiveness of our proposed algorithms. Compared to various benchmarks, we demonstrate that our proposed algorithms can significantly improve the average QoE of our considered network, especially when the caching and computation resources of the UAVs are limited.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"43 1","pages":"51-63"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint Content Caching, Service Placement, and Task Offloading in UAV-Enabled Mobile Edge Computing Networks\",\"authors\":\"Youhan Zhao;Chenxi Liu;Xiaoling Hu;Jianhua He;Mugen Peng;Derrick Wing Kwan Ng;Tony Q. S. Quek\",\"doi\":\"10.1109/JSAC.2024.3460049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider an unmanned aerial vehicle (UAV)-enabled mobile edge computing (MEC) network, where multiple UAVs with caching and computation functionalities are deployed to satisfy the heterogeneous content and service requests from the user equipments (UEs). In order to comprehensively characterize the capability of our considered network in satisfying the UEs’ requests, we define the weighted sum of the content cache hit ratio and the service delay shrinkage ratio as the average quality-of-experience (QoE) of our network and adopt it as the performance metric. Through analysis, we show how the average QoE of our network is dependent on the content cache and service placement decisions at the UAVs, as well as the computation task offloading decisions at the UEs, thus enabling us to formulate an average QoE maximization problem, subject to practical constraints on the UAVs’ caching and computation capabilities. To solve this NP-hard problem, we decompose it into two sub-problems, namely, the content cache and service placement optimization sub-problem and the task offloading optimization sub-problem. Gibbs sampling-based and matching game-based algorithms are proposed to efficiently solve these sub-problems iteratively. Via numerical results, we validate the effectiveness of our proposed algorithms. Compared to various benchmarks, we demonstrate that our proposed algorithms can significantly improve the average QoE of our considered network, especially when the caching and computation resources of the UAVs are limited.\",\"PeriodicalId\":73294,\"journal\":{\"name\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"volume\":\"43 1\",\"pages\":\"51-63\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10680081/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10680081/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Joint Content Caching, Service Placement, and Task Offloading in UAV-Enabled Mobile Edge Computing Networks
In this paper, we consider an unmanned aerial vehicle (UAV)-enabled mobile edge computing (MEC) network, where multiple UAVs with caching and computation functionalities are deployed to satisfy the heterogeneous content and service requests from the user equipments (UEs). In order to comprehensively characterize the capability of our considered network in satisfying the UEs’ requests, we define the weighted sum of the content cache hit ratio and the service delay shrinkage ratio as the average quality-of-experience (QoE) of our network and adopt it as the performance metric. Through analysis, we show how the average QoE of our network is dependent on the content cache and service placement decisions at the UAVs, as well as the computation task offloading decisions at the UEs, thus enabling us to formulate an average QoE maximization problem, subject to practical constraints on the UAVs’ caching and computation capabilities. To solve this NP-hard problem, we decompose it into two sub-problems, namely, the content cache and service placement optimization sub-problem and the task offloading optimization sub-problem. Gibbs sampling-based and matching game-based algorithms are proposed to efficiently solve these sub-problems iteratively. Via numerical results, we validate the effectiveness of our proposed algorithms. Compared to various benchmarks, we demonstrate that our proposed algorithms can significantly improve the average QoE of our considered network, especially when the caching and computation resources of the UAVs are limited.