{"title":"La/TiO2 结构中的过渡金属氧化物对紫外线和可见光照射下光催化降解孔雀石绿的影响","authors":"Nastaran Parsafard, Zahra Shoorgashti","doi":"10.1007/s13201-024-02285-1","DOIUrl":null,"url":null,"abstract":"<div><p>Herein, La@M<sub>x</sub>O<sub>y</sub>/TiO<sub>2</sub> (M = V, Cr, Mn and Fe) composite catalysts were prepared based on the sol–gel method as an effective adsorbent and photocatalyst for the degradation of malachite green from an aqueous solution under UV–Vis light. Under experimental conditions, a maximum adsorption capacity of 57.10% for the malachite green dye was achieved with La@Fe<sub>2</sub>O<sub>3</sub>/TiO<sub>2</sub>. Moreover, this composite showed 78.62% photodegradation efficiency for malachite green. A quadratic model constructed using the response surface method showed that the maximum efficiency of photodegradation of malachite green can be achieved at pH 11 and a process time of 35 min.</p></div>","PeriodicalId":8374,"journal":{"name":"Applied Water Science","volume":"14 10","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13201-024-02285-1.pdf","citationCount":"0","resultStr":"{\"title\":\"The effect of transition metal oxides in the La/TiO2 structure for the photocatalytic degradation of malachite green under UV and visible light irradiation\",\"authors\":\"Nastaran Parsafard, Zahra Shoorgashti\",\"doi\":\"10.1007/s13201-024-02285-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Herein, La@M<sub>x</sub>O<sub>y</sub>/TiO<sub>2</sub> (M = V, Cr, Mn and Fe) composite catalysts were prepared based on the sol–gel method as an effective adsorbent and photocatalyst for the degradation of malachite green from an aqueous solution under UV–Vis light. Under experimental conditions, a maximum adsorption capacity of 57.10% for the malachite green dye was achieved with La@Fe<sub>2</sub>O<sub>3</sub>/TiO<sub>2</sub>. Moreover, this composite showed 78.62% photodegradation efficiency for malachite green. A quadratic model constructed using the response surface method showed that the maximum efficiency of photodegradation of malachite green can be achieved at pH 11 and a process time of 35 min.</p></div>\",\"PeriodicalId\":8374,\"journal\":{\"name\":\"Applied Water Science\",\"volume\":\"14 10\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13201-024-02285-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Water Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13201-024-02285-1\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Water Science","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13201-024-02285-1","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
The effect of transition metal oxides in the La/TiO2 structure for the photocatalytic degradation of malachite green under UV and visible light irradiation
Herein, La@MxOy/TiO2 (M = V, Cr, Mn and Fe) composite catalysts were prepared based on the sol–gel method as an effective adsorbent and photocatalyst for the degradation of malachite green from an aqueous solution under UV–Vis light. Under experimental conditions, a maximum adsorption capacity of 57.10% for the malachite green dye was achieved with La@Fe2O3/TiO2. Moreover, this composite showed 78.62% photodegradation efficiency for malachite green. A quadratic model constructed using the response surface method showed that the maximum efficiency of photodegradation of malachite green can be achieved at pH 11 and a process time of 35 min.