利用 pGlycoNovo 发现缺失的聚糖和意想不到的片段,进行跨物种特定位点糖基化分析

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-09-14 DOI:10.1038/s41467-024-52099-7
Wen-Feng Zeng, Guoquan Yan, Huan-huan Zhao, Chao Liu, Weiqian Cao
{"title":"利用 pGlycoNovo 发现缺失的聚糖和意想不到的片段,进行跨物种特定位点糖基化分析","authors":"Wen-Feng Zeng, Guoquan Yan, Huan-huan Zhao, Chao Liu, Weiqian Cao","doi":"10.1038/s41467-024-52099-7","DOIUrl":null,"url":null,"abstract":"<p>Precision mapping of site-specific glycans using mass spectrometry is vital in glycoproteomics. However, the diversity of glycan compositions across species often exceeds database capacity, hindering the identification of rare glycans. Here, we introduce pGlycoNovo, a software within the pGlyco3 software environment, which employs a glycan first-based full-range Y-ion dynamic searching strategy. pGlycoNovo enables de novo identification of intact glycopeptides with rare glycans by considering all possible monosaccharide combinations, expanding the glycan search space to 16~1000 times compared to non-open search methods, while maintaining accuracy, sensitivity and speed. Reanalysis of SARS Covid-2 spike protein glycosylation data revealed 230 additional site-specific N-glycans and 30 previously unreported O-glycans. pGlycoNovo demonstrated high complementarity to six other tools and superior search speed. It enables characterization of site-specific N-glycosylation across five evolutionarily distant species, contributing to a dataset of 32,549 site-specific glycans on 4602 proteins, including 2409 site-specific rare glycans, and uncovering unexpected glycan fragments.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncovering missing glycans and unexpected fragments with pGlycoNovo for site-specific glycosylation analysis across species\",\"authors\":\"Wen-Feng Zeng, Guoquan Yan, Huan-huan Zhao, Chao Liu, Weiqian Cao\",\"doi\":\"10.1038/s41467-024-52099-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Precision mapping of site-specific glycans using mass spectrometry is vital in glycoproteomics. However, the diversity of glycan compositions across species often exceeds database capacity, hindering the identification of rare glycans. Here, we introduce pGlycoNovo, a software within the pGlyco3 software environment, which employs a glycan first-based full-range Y-ion dynamic searching strategy. pGlycoNovo enables de novo identification of intact glycopeptides with rare glycans by considering all possible monosaccharide combinations, expanding the glycan search space to 16~1000 times compared to non-open search methods, while maintaining accuracy, sensitivity and speed. Reanalysis of SARS Covid-2 spike protein glycosylation data revealed 230 additional site-specific N-glycans and 30 previously unreported O-glycans. pGlycoNovo demonstrated high complementarity to six other tools and superior search speed. It enables characterization of site-specific N-glycosylation across five evolutionarily distant species, contributing to a dataset of 32,549 site-specific glycans on 4602 proteins, including 2409 site-specific rare glycans, and uncovering unexpected glycan fragments.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-52099-7\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-52099-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

利用质谱技术精确绘制特定位点的聚糖图谱在糖蛋白组学中至关重要。然而,不同物种间聚糖组成的多样性往往超出了数据库的容量,从而阻碍了稀有聚糖的鉴定。pGlycoNovo 通过考虑所有可能的单糖组合,在保持准确性、灵敏度和速度的前提下,将糖搜索空间扩大到非开放式搜索方法的 16~1000 倍,从而实现对具有稀有糖的完整糖肽的从头鉴定。对SARS Covid-2尖峰蛋白糖基化数据的重新分析发现了另外230个特异位点的N-聚糖和30个以前未报道的O-聚糖。它能够鉴定五个进化遥远物种的特异位点 N-糖基化,为 4602 个蛋白质上的 32,549 个特异位点聚糖数据集做出了贡献,其中包括 2409 个特异位点稀有聚糖,并发现了意想不到的聚糖片段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Uncovering missing glycans and unexpected fragments with pGlycoNovo for site-specific glycosylation analysis across species

Precision mapping of site-specific glycans using mass spectrometry is vital in glycoproteomics. However, the diversity of glycan compositions across species often exceeds database capacity, hindering the identification of rare glycans. Here, we introduce pGlycoNovo, a software within the pGlyco3 software environment, which employs a glycan first-based full-range Y-ion dynamic searching strategy. pGlycoNovo enables de novo identification of intact glycopeptides with rare glycans by considering all possible monosaccharide combinations, expanding the glycan search space to 16~1000 times compared to non-open search methods, while maintaining accuracy, sensitivity and speed. Reanalysis of SARS Covid-2 spike protein glycosylation data revealed 230 additional site-specific N-glycans and 30 previously unreported O-glycans. pGlycoNovo demonstrated high complementarity to six other tools and superior search speed. It enables characterization of site-specific N-glycosylation across five evolutionarily distant species, contributing to a dataset of 32,549 site-specific glycans on 4602 proteins, including 2409 site-specific rare glycans, and uncovering unexpected glycan fragments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
A metagenomic catalogue of the ruminant gut archaeome. Detecting biological motion signals in human and monkey superior colliculus: a subcortical-cortical pathway for biological motion perception. Enhanced production of 60Fe in massive stars. Scalable robust photothermal superhydrophobic coatings for efficient anti-icing and de-icing in simulated/real environments. Ultrafast complete dechlorination enabled by ferrous oxide/graphene oxide catalytic membranes via nanoconfinement advanced reduction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1