设计用于烧结的多组分合金

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-09-13 DOI:10.1038/s41467-024-52261-1
Yannick Naunheim, Christopher A. Schuh
{"title":"设计用于烧结的多组分合金","authors":"Yannick Naunheim, Christopher A. Schuh","doi":"10.1038/s41467-024-52261-1","DOIUrl":null,"url":null,"abstract":"<p>Powder sintering is a low-energy, net-shape processing route for many new products in the additive manufacturing space. We advance the viewpoint that for future manufacturing, alloys should be designed from materials science principles to sinter quickly at lower temperatures and with controlled final microstructures. Specifically, we illustrate the computational design of multinary Ni-base alloys, whose chemistries permit a low-temperature solid-state sintering scheme without any pressure- or field-assistance, as well as heat-treatability after sintering. The strategy is based on sequential phase evolutions designed to occur during sintering. The reactions involve rapid reorganization of matter to full density in cycles up to just 1200 °C, while conventional Ni alloys sintered in the solid-state require about ten times longer, or more than 250 °C degrees higher temperature. Our approach yields an alloy that benefits from precipitation hardening, has an increased strength <span>\\(\\sim\\)</span>50% higher than solid-state processed commercial Ni alloys, and yet exhibits extensive plasticity beyond 35% uniaxial strain. The results point to a generalizable design scheme for many other alloys designed for solid-state powder processing that can enable greater value from additive manufacturing.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multicomponent alloys designed to sinter\",\"authors\":\"Yannick Naunheim, Christopher A. Schuh\",\"doi\":\"10.1038/s41467-024-52261-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Powder sintering is a low-energy, net-shape processing route for many new products in the additive manufacturing space. We advance the viewpoint that for future manufacturing, alloys should be designed from materials science principles to sinter quickly at lower temperatures and with controlled final microstructures. Specifically, we illustrate the computational design of multinary Ni-base alloys, whose chemistries permit a low-temperature solid-state sintering scheme without any pressure- or field-assistance, as well as heat-treatability after sintering. The strategy is based on sequential phase evolutions designed to occur during sintering. The reactions involve rapid reorganization of matter to full density in cycles up to just 1200 °C, while conventional Ni alloys sintered in the solid-state require about ten times longer, or more than 250 °C degrees higher temperature. Our approach yields an alloy that benefits from precipitation hardening, has an increased strength <span>\\\\(\\\\sim\\\\)</span>50% higher than solid-state processed commercial Ni alloys, and yet exhibits extensive plasticity beyond 35% uniaxial strain. The results point to a generalizable design scheme for many other alloys designed for solid-state powder processing that can enable greater value from additive manufacturing.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-52261-1\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-52261-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

粉末烧结是增材制造领域许多新产品的低能耗、净成形加工途径。我们提出的观点是,对于未来的制造,应根据材料科学原理设计合金,以便在较低温度下快速烧结,并控制最终的微观结构。具体来说,我们展示了二元镍基合金的计算设计,其化学性质允许采用低温固态烧结方案,无需任何压力或场阻力,烧结后也可进行热处理。该策略以烧结过程中发生的连续相变为基础。这些反应涉及物质的快速重组,使其在 1200 °C 的循环中达到完全密度,而传统的固态烧结镍合金需要十倍的时间,或 250 °C 以上的高温。我们的方法产生了一种合金,它得益于沉淀硬化,强度比固态加工的商用镍合金高出 50%,而且在 35% 的单轴应变之外还表现出广泛的塑性。这些结果为许多其他合金的固态粉末加工设计指出了一种可通用的设计方案,它能使增材制造产生更大的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multicomponent alloys designed to sinter

Powder sintering is a low-energy, net-shape processing route for many new products in the additive manufacturing space. We advance the viewpoint that for future manufacturing, alloys should be designed from materials science principles to sinter quickly at lower temperatures and with controlled final microstructures. Specifically, we illustrate the computational design of multinary Ni-base alloys, whose chemistries permit a low-temperature solid-state sintering scheme without any pressure- or field-assistance, as well as heat-treatability after sintering. The strategy is based on sequential phase evolutions designed to occur during sintering. The reactions involve rapid reorganization of matter to full density in cycles up to just 1200 °C, while conventional Ni alloys sintered in the solid-state require about ten times longer, or more than 250 °C degrees higher temperature. Our approach yields an alloy that benefits from precipitation hardening, has an increased strength \(\sim\)50% higher than solid-state processed commercial Ni alloys, and yet exhibits extensive plasticity beyond 35% uniaxial strain. The results point to a generalizable design scheme for many other alloys designed for solid-state powder processing that can enable greater value from additive manufacturing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
An atlas of small non-coding RNAs in human preimplantation development. Astrocytic neuroligin 3 regulates social memory and synaptic plasticity through adenosine signaling in male mice. Biofunctionalized dissolvable hydrogel microbeads enable efficient characterization of native protein complexes. Concerted transcriptional regulation of the morphogenesis of hypothalamic neurons by ONECUT3. Cryo-EM investigation of ryanodine receptor type 3.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1