{"title":"从心球图识别非接触式情绪的深度学习方法","authors":"","doi":"10.1016/j.bspc.2024.106891","DOIUrl":null,"url":null,"abstract":"<div><p>Emotion recognition is a major research point in the field of affective computing. Existing research on the application of physiological signals to emotion recognition mainly focuses on the processing of contact signals. However, there are issues with contact signal acquisition equipment, such as limited portability and poor user compliance, which make it difficult to promote its use. To explore a new method for emotion recognition based on contactless ballistocardiogram (BCG), we proposed a SE-CNN model with a multi-class focal loss function. To construct the dataset, we used audio-visual stimuli to evoke the subjects’ emotions and collected data on the subjects’ three discrete emotions, positive, neutral, and negative, through our established BCG signal acquisition system based on a piezoelectric ceramics sensor. Root mean square filter and thresholding were used to detect and eliminate motion artifacts of BCG signals. We did two kinds of preprocessing on BCG signals: wavelet transform and bandpass filtering, to explore the effect of different components of BCG on emotion recognition. Subsequently, we verified the model’s performance and cross-time working ability through traditional K-Fold and our proposed K-Session cross-validation methods. The results showed that the band-pass filtering method was more beneficial to the current classification task. Under K-Fold cross-validation, the model’s accuracy, precision, and recall were 97.21%, 97.00%, and 97.11%. Under K-Session cross-validation, the model’s accuracy, precision, and recall were 94.66%, 93.92%, and 94.86%, respectively, all of which were better than the classification effect of synchronous ECG. The reliability of BCG in contactless emotion recognition was proved.</p></div>","PeriodicalId":55362,"journal":{"name":"Biomedical Signal Processing and Control","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deep learning method for contactless emotion recognition from ballistocardiogram\",\"authors\":\"\",\"doi\":\"10.1016/j.bspc.2024.106891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Emotion recognition is a major research point in the field of affective computing. Existing research on the application of physiological signals to emotion recognition mainly focuses on the processing of contact signals. However, there are issues with contact signal acquisition equipment, such as limited portability and poor user compliance, which make it difficult to promote its use. To explore a new method for emotion recognition based on contactless ballistocardiogram (BCG), we proposed a SE-CNN model with a multi-class focal loss function. To construct the dataset, we used audio-visual stimuli to evoke the subjects’ emotions and collected data on the subjects’ three discrete emotions, positive, neutral, and negative, through our established BCG signal acquisition system based on a piezoelectric ceramics sensor. Root mean square filter and thresholding were used to detect and eliminate motion artifacts of BCG signals. We did two kinds of preprocessing on BCG signals: wavelet transform and bandpass filtering, to explore the effect of different components of BCG on emotion recognition. Subsequently, we verified the model’s performance and cross-time working ability through traditional K-Fold and our proposed K-Session cross-validation methods. The results showed that the band-pass filtering method was more beneficial to the current classification task. Under K-Fold cross-validation, the model’s accuracy, precision, and recall were 97.21%, 97.00%, and 97.11%. Under K-Session cross-validation, the model’s accuracy, precision, and recall were 94.66%, 93.92%, and 94.86%, respectively, all of which were better than the classification effect of synchronous ECG. The reliability of BCG in contactless emotion recognition was proved.</p></div>\",\"PeriodicalId\":55362,\"journal\":{\"name\":\"Biomedical Signal Processing and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Signal Processing and Control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1746809424009492\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Signal Processing and Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1746809424009492","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A deep learning method for contactless emotion recognition from ballistocardiogram
Emotion recognition is a major research point in the field of affective computing. Existing research on the application of physiological signals to emotion recognition mainly focuses on the processing of contact signals. However, there are issues with contact signal acquisition equipment, such as limited portability and poor user compliance, which make it difficult to promote its use. To explore a new method for emotion recognition based on contactless ballistocardiogram (BCG), we proposed a SE-CNN model with a multi-class focal loss function. To construct the dataset, we used audio-visual stimuli to evoke the subjects’ emotions and collected data on the subjects’ three discrete emotions, positive, neutral, and negative, through our established BCG signal acquisition system based on a piezoelectric ceramics sensor. Root mean square filter and thresholding were used to detect and eliminate motion artifacts of BCG signals. We did two kinds of preprocessing on BCG signals: wavelet transform and bandpass filtering, to explore the effect of different components of BCG on emotion recognition. Subsequently, we verified the model’s performance and cross-time working ability through traditional K-Fold and our proposed K-Session cross-validation methods. The results showed that the band-pass filtering method was more beneficial to the current classification task. Under K-Fold cross-validation, the model’s accuracy, precision, and recall were 97.21%, 97.00%, and 97.11%. Under K-Session cross-validation, the model’s accuracy, precision, and recall were 94.66%, 93.92%, and 94.86%, respectively, all of which were better than the classification effect of synchronous ECG. The reliability of BCG in contactless emotion recognition was proved.
期刊介绍:
Biomedical Signal Processing and Control aims to provide a cross-disciplinary international forum for the interchange of information on research in the measurement and analysis of signals and images in clinical medicine and the biological sciences. Emphasis is placed on contributions dealing with the practical, applications-led research on the use of methods and devices in clinical diagnosis, patient monitoring and management.
Biomedical Signal Processing and Control reflects the main areas in which these methods are being used and developed at the interface of both engineering and clinical science. The scope of the journal is defined to include relevant review papers, technical notes, short communications and letters. Tutorial papers and special issues will also be published.