利用地球观测数据估算区域范围内野火风险评估的燃料负荷:澳大利亚西南部案例研究

IF 3.8 Q2 ENVIRONMENTAL SCIENCES Remote Sensing Applications-Society and Environment Pub Date : 2024-09-11 DOI:10.1016/j.rsase.2024.101356
Lulu He , Amelie Jeanneau , Simon Ramsey , Douglas Arthur Gordan Radford , Aaron C. Zecchin , Karin Reinke , Simon D. Jones , Hedwig van Delden , Tim McNaught , Seth Westra , Holger R. Maier
{"title":"利用地球观测数据估算区域范围内野火风险评估的燃料负荷:澳大利亚西南部案例研究","authors":"Lulu He ,&nbsp;Amelie Jeanneau ,&nbsp;Simon Ramsey ,&nbsp;Douglas Arthur Gordan Radford ,&nbsp;Aaron C. Zecchin ,&nbsp;Karin Reinke ,&nbsp;Simon D. Jones ,&nbsp;Hedwig van Delden ,&nbsp;Tim McNaught ,&nbsp;Seth Westra ,&nbsp;Holger R. Maier","doi":"10.1016/j.rsase.2024.101356","DOIUrl":null,"url":null,"abstract":"<div><p>The risk of wildfires is increasing globally and models are critical to reducing this risk. Such models require information on fuel load, a crucial factor of fire behaviour, which is generally determined using a combination of fuel age and fuel accumulation models. Traditionally, estimating fuel load relies on manually compiled fire history data (MCFH). In this paper, we introduce an approach to estimate fuel load using readily available earth observation (EO) data, MODIS MCD64A1. The approach is applied to a wildfire-prone region in Southwestern Australia from 2001 to 2021. Results suggest that MODIS produces more accurate and reliable estimates of fuel load compared with MCFH. It is effective in maintaining spatially and temporally complete records of fires, as it reports 11,019 more hectares of burned areas associated with wildfires over the study period. MODIS performs better in capturing wildfires than prescribed burns, as the spatial overlapping ratio is higher for wildfires (0.63) than prescribed burns (0.42). The high agreement between the two datasets for fuel load estimation (weighted kappa of 0.91) results from grassland covering the majority of the landscape. However, the agreement is reduced for other vegetation types — 0.24 for pine, 0.36 for mallee heath, 0.39 for shrubland, and 0.58 for forest. MODIS has lower effectiveness in detecting small and under-canopy fires such as prescribed burns, suggesting the value in combining EO and manually compiled data to obtain improved estimates of fuel load. Due to the scope of objectives, the integration of EO and MCFH has not been fully explored in this study, which will be included in our future research. This study highlights the potential of earth observation data in assessing wildfire risk as the data are easily accessible and reliable, as well as efficient and cost-effective, and they provide the opportunity to develop mitigation strategies at regional scales.</p></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"36 ","pages":"Article 101356"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352938524002209/pdfft?md5=4abb2fe0980ee7d3b0eb7ec4183259ab&pid=1-s2.0-S2352938524002209-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Estimating fuel load for wildfire risk assessment at regional scales using earth observation data: A case study in Southwestern Australia\",\"authors\":\"Lulu He ,&nbsp;Amelie Jeanneau ,&nbsp;Simon Ramsey ,&nbsp;Douglas Arthur Gordan Radford ,&nbsp;Aaron C. Zecchin ,&nbsp;Karin Reinke ,&nbsp;Simon D. Jones ,&nbsp;Hedwig van Delden ,&nbsp;Tim McNaught ,&nbsp;Seth Westra ,&nbsp;Holger R. Maier\",\"doi\":\"10.1016/j.rsase.2024.101356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The risk of wildfires is increasing globally and models are critical to reducing this risk. Such models require information on fuel load, a crucial factor of fire behaviour, which is generally determined using a combination of fuel age and fuel accumulation models. Traditionally, estimating fuel load relies on manually compiled fire history data (MCFH). In this paper, we introduce an approach to estimate fuel load using readily available earth observation (EO) data, MODIS MCD64A1. The approach is applied to a wildfire-prone region in Southwestern Australia from 2001 to 2021. Results suggest that MODIS produces more accurate and reliable estimates of fuel load compared with MCFH. It is effective in maintaining spatially and temporally complete records of fires, as it reports 11,019 more hectares of burned areas associated with wildfires over the study period. MODIS performs better in capturing wildfires than prescribed burns, as the spatial overlapping ratio is higher for wildfires (0.63) than prescribed burns (0.42). The high agreement between the two datasets for fuel load estimation (weighted kappa of 0.91) results from grassland covering the majority of the landscape. However, the agreement is reduced for other vegetation types — 0.24 for pine, 0.36 for mallee heath, 0.39 for shrubland, and 0.58 for forest. MODIS has lower effectiveness in detecting small and under-canopy fires such as prescribed burns, suggesting the value in combining EO and manually compiled data to obtain improved estimates of fuel load. Due to the scope of objectives, the integration of EO and MCFH has not been fully explored in this study, which will be included in our future research. This study highlights the potential of earth observation data in assessing wildfire risk as the data are easily accessible and reliable, as well as efficient and cost-effective, and they provide the opportunity to develop mitigation strategies at regional scales.</p></div>\",\"PeriodicalId\":53227,\"journal\":{\"name\":\"Remote Sensing Applications-Society and Environment\",\"volume\":\"36 \",\"pages\":\"Article 101356\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352938524002209/pdfft?md5=4abb2fe0980ee7d3b0eb7ec4183259ab&pid=1-s2.0-S2352938524002209-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing Applications-Society and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352938524002209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524002209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

野火的风险在全球范围内与日俱增,而模型对于降低这种风险至关重要。此类模型需要有关燃料负荷的信息,而燃料负荷是影响火灾行为的关键因素。传统上,燃料负荷的估算依赖于人工编辑的火灾历史数据(MCFH)。在本文中,我们介绍了一种利用现成的地球观测(EO)数据(MODIS MCD64A1)估算燃料负荷的方法。该方法适用于 2001 年至 2021 年澳大利亚西南部的一个野火多发地区。结果表明,与 MCFH 相比,MODIS 对燃料负荷的估算更加准确可靠。它能有效地保持完整的火灾时空记录,因为在研究期间,它多报告了 11,019 公顷与野火相关的烧毁面积。MODIS 在捕捉野火方面的表现优于规定的烧毁,因为野火的空间重叠率(0.63)高于规定的烧毁(0.42)。两个数据集在燃料负荷估算方面的一致性很高(加权卡帕值为 0.91),这是因为草地覆盖了大部分地貌。然而,其他植被类型的吻合度较低,松树为 0.24,马利石楠为 0.36,灌木林为 0.39,森林为 0.58。MODIS 在检测小型火灾和树冠下火灾(如规定的焚烧)方面的有效性较低,这表明将 EO 和人工编辑的数据结合起来以获得更好的燃料负荷估算值很有价值。由于目标范围所限,本研究尚未充分探讨 EO 与 MCFH 的整合问题,这将纳入我们今后的研究中。这项研究强调了地球观测数据在评估野火风险方面的潜力,因为这些数据易于获取、可靠、高效且具有成本效益,它们为制定区域范围的减灾战略提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimating fuel load for wildfire risk assessment at regional scales using earth observation data: A case study in Southwestern Australia

The risk of wildfires is increasing globally and models are critical to reducing this risk. Such models require information on fuel load, a crucial factor of fire behaviour, which is generally determined using a combination of fuel age and fuel accumulation models. Traditionally, estimating fuel load relies on manually compiled fire history data (MCFH). In this paper, we introduce an approach to estimate fuel load using readily available earth observation (EO) data, MODIS MCD64A1. The approach is applied to a wildfire-prone region in Southwestern Australia from 2001 to 2021. Results suggest that MODIS produces more accurate and reliable estimates of fuel load compared with MCFH. It is effective in maintaining spatially and temporally complete records of fires, as it reports 11,019 more hectares of burned areas associated with wildfires over the study period. MODIS performs better in capturing wildfires than prescribed burns, as the spatial overlapping ratio is higher for wildfires (0.63) than prescribed burns (0.42). The high agreement between the two datasets for fuel load estimation (weighted kappa of 0.91) results from grassland covering the majority of the landscape. However, the agreement is reduced for other vegetation types — 0.24 for pine, 0.36 for mallee heath, 0.39 for shrubland, and 0.58 for forest. MODIS has lower effectiveness in detecting small and under-canopy fires such as prescribed burns, suggesting the value in combining EO and manually compiled data to obtain improved estimates of fuel load. Due to the scope of objectives, the integration of EO and MCFH has not been fully explored in this study, which will be included in our future research. This study highlights the potential of earth observation data in assessing wildfire risk as the data are easily accessible and reliable, as well as efficient and cost-effective, and they provide the opportunity to develop mitigation strategies at regional scales.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
8.50%
发文量
204
审稿时长
65 days
期刊介绍: The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems
期刊最新文献
Improving the estimation approach of percentage of impervious area for the storm water management model — A case study of the Zengwen reservoir watershed, Taiwan Multilayer optimized deep learning model to analyze spectral indices for predicting the condition of rice blast disease A review of the global operational geostationary meteorological satellites Assessing drivers of vegetation fire occurrence in Zimbabwe - Insights from Maxent modelling and historical data analysis Analysis of spatiotemporal surface water variability and drought conditions using remote sensing indices in the Kagera River Sub-Basin, Tanzania
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1