{"title":"干细胞中的钙振荡和线粒体酶","authors":"Mio Fukuoka , Woojin Kang , Sae Horiike , Mitsutoshi Yamada , Kenji Miyado","doi":"10.1016/j.reth.2024.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>Calcium oscillations are rhythmic fluctuations of the intracellular concentration of calcium ions (Ca<sup>2+</sup>). As Ca<sup>2+</sup> evokes various cellular processes, its intracellular concentration is tightly regulated. Ca<sup>2+</sup> oscillations control biological events, including neuronal differentiation and proliferation of mesenchymal stem cells. The frequency and pattern of Ca<sup>2+</sup> oscillations depend on cell type. Researchers have studied Ca<sup>2+</sup> oscillations to better understand how cells communicate and regulate physiological processes. Dysregulation of Ca<sup>2+</sup> oscillations causes health problems, such as neurodegenerative disorders. This review discusses the potential functions of Ca<sup>2+</sup> oscillations in stem cells.</p></div>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"26 ","pages":"Pages 811-818"},"PeriodicalIF":3.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352320424001639/pdfft?md5=3fade2e99a200ef761478d7c67b4f899&pid=1-s2.0-S2352320424001639-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Calcium oscillations and mitochondrial enzymes in stem cells\",\"authors\":\"Mio Fukuoka , Woojin Kang , Sae Horiike , Mitsutoshi Yamada , Kenji Miyado\",\"doi\":\"10.1016/j.reth.2024.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Calcium oscillations are rhythmic fluctuations of the intracellular concentration of calcium ions (Ca<sup>2+</sup>). As Ca<sup>2+</sup> evokes various cellular processes, its intracellular concentration is tightly regulated. Ca<sup>2+</sup> oscillations control biological events, including neuronal differentiation and proliferation of mesenchymal stem cells. The frequency and pattern of Ca<sup>2+</sup> oscillations depend on cell type. Researchers have studied Ca<sup>2+</sup> oscillations to better understand how cells communicate and regulate physiological processes. Dysregulation of Ca<sup>2+</sup> oscillations causes health problems, such as neurodegenerative disorders. This review discusses the potential functions of Ca<sup>2+</sup> oscillations in stem cells.</p></div>\",\"PeriodicalId\":20895,\"journal\":{\"name\":\"Regenerative Therapy\",\"volume\":\"26 \",\"pages\":\"Pages 811-818\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352320424001639/pdfft?md5=3fade2e99a200ef761478d7c67b4f899&pid=1-s2.0-S2352320424001639-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regenerative Therapy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352320424001639\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Therapy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352320424001639","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Calcium oscillations and mitochondrial enzymes in stem cells
Calcium oscillations are rhythmic fluctuations of the intracellular concentration of calcium ions (Ca2+). As Ca2+ evokes various cellular processes, its intracellular concentration is tightly regulated. Ca2+ oscillations control biological events, including neuronal differentiation and proliferation of mesenchymal stem cells. The frequency and pattern of Ca2+ oscillations depend on cell type. Researchers have studied Ca2+ oscillations to better understand how cells communicate and regulate physiological processes. Dysregulation of Ca2+ oscillations causes health problems, such as neurodegenerative disorders. This review discusses the potential functions of Ca2+ oscillations in stem cells.
期刊介绍:
Regenerative Therapy is the official peer-reviewed online journal of the Japanese Society for Regenerative Medicine.
Regenerative Therapy is a multidisciplinary journal that publishes original articles and reviews of basic research, clinical translation, industrial development, and regulatory issues focusing on stem cell biology, tissue engineering, and regenerative medicine.