表观遗传学与神经元分化的时机

IF 4.8 2区 医学 Q1 NEUROSCIENCES Current Opinion in Neurobiology Pub Date : 2024-09-14 DOI:10.1016/j.conb.2024.102915
{"title":"表观遗传学与神经元分化的时机","authors":"","doi":"10.1016/j.conb.2024.102915","DOIUrl":null,"url":null,"abstract":"<div><p>Epigenetic regulation of the genome is required for cell-type differentiation during organismal development and is especially important to generate the panoply of specialized cell types that comprise the brain. Here, we review how progressive changes in the chromatin landscape, both in neural progenitors and in postmitotic neurons, orchestrate the timing of gene expression programs that underlie first neurogenesis and then functional neuronal maturation. We discuss how disease-associated mutations in chromatin regulators can change brain composition by impairing the timing of neurogenesis. Further, we highlight studies that are beginning to show how chromatin modifications are integrated at the level of chromatin architecture to coordinate changing transcriptional programs across developmental including in postmitotic neurons.</p></div>","PeriodicalId":10999,"journal":{"name":"Current Opinion in Neurobiology","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epigenetics and the timing of neuronal differentiation\",\"authors\":\"\",\"doi\":\"10.1016/j.conb.2024.102915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Epigenetic regulation of the genome is required for cell-type differentiation during organismal development and is especially important to generate the panoply of specialized cell types that comprise the brain. Here, we review how progressive changes in the chromatin landscape, both in neural progenitors and in postmitotic neurons, orchestrate the timing of gene expression programs that underlie first neurogenesis and then functional neuronal maturation. We discuss how disease-associated mutations in chromatin regulators can change brain composition by impairing the timing of neurogenesis. Further, we highlight studies that are beginning to show how chromatin modifications are integrated at the level of chromatin architecture to coordinate changing transcriptional programs across developmental including in postmitotic neurons.</p></div>\",\"PeriodicalId\":10999,\"journal\":{\"name\":\"Current Opinion in Neurobiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959438824000771\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959438824000771","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

基因组的表观遗传调控是生物体发育过程中细胞类型分化所必需的,对于产生构成大脑的各种特化细胞类型尤为重要。在这里,我们回顾了染色质景观在神经祖细胞和有丝分裂后神经元中的渐进变化是如何协调基因表达程序的时间安排的,而基因表达程序首先是神经发生的基础,然后才是功能性神经元的成熟。我们将讨论与疾病相关的染色质调控因子突变如何通过损害神经发生的时间来改变大脑的组成。此外,我们还重点介绍了一些研究,这些研究开始显示染色质修饰如何在染色质结构水平上整合,以协调包括有丝分裂后神经元在内的各发育阶段不断变化的转录程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Epigenetics and the timing of neuronal differentiation

Epigenetic regulation of the genome is required for cell-type differentiation during organismal development and is especially important to generate the panoply of specialized cell types that comprise the brain. Here, we review how progressive changes in the chromatin landscape, both in neural progenitors and in postmitotic neurons, orchestrate the timing of gene expression programs that underlie first neurogenesis and then functional neuronal maturation. We discuss how disease-associated mutations in chromatin regulators can change brain composition by impairing the timing of neurogenesis. Further, we highlight studies that are beginning to show how chromatin modifications are integrated at the level of chromatin architecture to coordinate changing transcriptional programs across developmental including in postmitotic neurons.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Neurobiology
Current Opinion in Neurobiology 医学-神经科学
CiteScore
11.10
自引率
1.80%
发文量
130
审稿时长
4-8 weeks
期刊介绍: Current Opinion in Neurobiology publishes short annotated reviews by leading experts on recent developments in the field of neurobiology. These experts write short reviews describing recent discoveries in this field (in the past 2-5 years), as well as highlighting select individual papers of particular significance. The journal is thus an important resource allowing researchers and educators to quickly gain an overview and rich understanding of complex and current issues in the field of Neurobiology. The journal takes a unique and valuable approach in focusing each special issue around a topic of scientific and/or societal interest, and then bringing together leading international experts studying that topic, embracing diverse methodologies and perspectives. Journal Content: The journal consists of 6 issues per year, covering 8 recurring topics every other year in the following categories: -Neurobiology of Disease- Neurobiology of Behavior- Cellular Neuroscience- Systems Neuroscience- Developmental Neuroscience- Neurobiology of Learning and Plasticity- Molecular Neuroscience- Computational Neuroscience
期刊最新文献
Polygenicity in a box: Copy number variants, neural circuit development, and neurodevelopmental disorders The power of human stem cell-based systems in the study of neurodevelopmental disorders Epigenetics and the timing of neuronal differentiation Editorial Board Caenorhabditis elegans for opioid addiction research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1