Al2O3 对 Co3O4 的改性:对还原性的影响

IF 3.2 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Journal of Solid State Chemistry Pub Date : 2024-09-12 DOI:10.1016/j.jssc.2024.125012
{"title":"Al2O3 对 Co3O4 的改性:对还原性的影响","authors":"","doi":"10.1016/j.jssc.2024.125012","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we used a coprecipitation method followed by calcination at 500 °C to synthesize undoped and Al<sup>3+</sup>-doped Co<sub>3</sub>O<sub>4</sub> nanoparticles with different aluminum fractions (x = Al/(Co + Al) = 1/60, 1/30, 1/15, 1/75, 1/6 and 1/5). An addition of Al<sup>3+</sup> ions led to a decrease in the average crystallite size from 29 to 11 nm, and growth of the specific surface area from 28 to 91 m<sup>2</sup>/g. TEM images indicated round and platelet shapes of the nanoparticles. According to HAADF-STEM combined with EDS elemental mapping, the platelet shape particles are Al<sup>3+</sup>-enriched, while the round shape particles are Al<sup>3+</sup>-depleted. The origin of Al<sup>3+</sup> distribution over the oxide volume is conditioned by the state of the hydroxide precursor. It was shown by XRD that the coprecipitation yielded homogeneous hydroxides only for Al fractions x = 0 and x = 1/5. For the intermediate compositions, the precursors represent a mixture of Co<sub>6</sub>(CO<sub>3</sub>)<sub>2</sub>(OH)<sub>8</sub>*H<sub>2</sub>O and Co<sub>0.8</sub>Al<sub>0.2</sub>(OH)<sub>2</sub>(CO<sub>3</sub>)<sub>0.1</sub>*nH<sub>2</sub>O. On the TPR-H<sub>2</sub> profiles, reduction peaks for three (Co,Al)<sub>3</sub>O<sub>4</sub> oxides differing in the Al<sup>3+</sup> concentration (y) can be found. Two of these oxides with y = 0 and y = 0.2 are formed from different hydroxides, and third one with y ∼0.05 is the result of their mutual interaction. In situ XRD allowed us to interpret the TPR peaks correctly and showed that the reduction of all the oxides occurs in two steps. In the first step, Co<sup>3+</sup> → Co<sup>2+</sup>, and (Co<sub>1-y</sub>Al<sub>y</sub>)<sub>3</sub>O<sub>4</sub> oxides transform to (Co,Al)O. In the second step, Co<sup>2+</sup> → Co<sup>0</sup>, and (Co,Al)O is reduced into metallic cobalt. In undoped Co<sub>3</sub>O<sub>4</sub>, Co<sup>3+</sup> → Co<sup>2+</sup> and Co<sup>2+</sup> → Co<sup>0</sup> reduction steps occur at T<sub>1</sub> = 280 and T<sub>2</sub> = 325 °C, respectively. For Al-depleted (Co<sub>1-y</sub>Al<sub>y</sub>)<sub>3</sub>O<sub>4</sub> (y ∼ 0.05 in the interior of particles), both reduction steps shift toward higher temperatures T<sub>1</sub> = 305 and T<sub>2</sub> = 405 °C, respectively. The reduction of Al-enriched (Co<sub>0.8</sub>Al<sub>0.2</sub>)<sub>3</sub>O<sub>4</sub> is more difficult; first and second reduction steps occur at T<sub>1</sub> = 345 and T<sub>2</sub> = 610−690 °C. Therefore, Al<sup>3+</sup> ions have a little effect on the first step and very significantly influence the second one. Additionally, it was shown by TEM that after the reduction at 700 °C metallic cobalt particles were surrounded by the Al-enriched oxide shell. Apparently, that is why the addition of even a small amount of Al<sup>3+</sup> ions prevents a quick sintering of metallic cobalt observed for pure Co<sub>3</sub>O<sub>4</sub>.</p></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modification of Co3O4 by Al2O3: Influence on the reducibility\",\"authors\":\"\",\"doi\":\"10.1016/j.jssc.2024.125012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we used a coprecipitation method followed by calcination at 500 °C to synthesize undoped and Al<sup>3+</sup>-doped Co<sub>3</sub>O<sub>4</sub> nanoparticles with different aluminum fractions (x = Al/(Co + Al) = 1/60, 1/30, 1/15, 1/75, 1/6 and 1/5). An addition of Al<sup>3+</sup> ions led to a decrease in the average crystallite size from 29 to 11 nm, and growth of the specific surface area from 28 to 91 m<sup>2</sup>/g. TEM images indicated round and platelet shapes of the nanoparticles. According to HAADF-STEM combined with EDS elemental mapping, the platelet shape particles are Al<sup>3+</sup>-enriched, while the round shape particles are Al<sup>3+</sup>-depleted. The origin of Al<sup>3+</sup> distribution over the oxide volume is conditioned by the state of the hydroxide precursor. It was shown by XRD that the coprecipitation yielded homogeneous hydroxides only for Al fractions x = 0 and x = 1/5. For the intermediate compositions, the precursors represent a mixture of Co<sub>6</sub>(CO<sub>3</sub>)<sub>2</sub>(OH)<sub>8</sub>*H<sub>2</sub>O and Co<sub>0.8</sub>Al<sub>0.2</sub>(OH)<sub>2</sub>(CO<sub>3</sub>)<sub>0.1</sub>*nH<sub>2</sub>O. On the TPR-H<sub>2</sub> profiles, reduction peaks for three (Co,Al)<sub>3</sub>O<sub>4</sub> oxides differing in the Al<sup>3+</sup> concentration (y) can be found. Two of these oxides with y = 0 and y = 0.2 are formed from different hydroxides, and third one with y ∼0.05 is the result of their mutual interaction. In situ XRD allowed us to interpret the TPR peaks correctly and showed that the reduction of all the oxides occurs in two steps. In the first step, Co<sup>3+</sup> → Co<sup>2+</sup>, and (Co<sub>1-y</sub>Al<sub>y</sub>)<sub>3</sub>O<sub>4</sub> oxides transform to (Co,Al)O. In the second step, Co<sup>2+</sup> → Co<sup>0</sup>, and (Co,Al)O is reduced into metallic cobalt. In undoped Co<sub>3</sub>O<sub>4</sub>, Co<sup>3+</sup> → Co<sup>2+</sup> and Co<sup>2+</sup> → Co<sup>0</sup> reduction steps occur at T<sub>1</sub> = 280 and T<sub>2</sub> = 325 °C, respectively. For Al-depleted (Co<sub>1-y</sub>Al<sub>y</sub>)<sub>3</sub>O<sub>4</sub> (y ∼ 0.05 in the interior of particles), both reduction steps shift toward higher temperatures T<sub>1</sub> = 305 and T<sub>2</sub> = 405 °C, respectively. The reduction of Al-enriched (Co<sub>0.8</sub>Al<sub>0.2</sub>)<sub>3</sub>O<sub>4</sub> is more difficult; first and second reduction steps occur at T<sub>1</sub> = 345 and T<sub>2</sub> = 610−690 °C. Therefore, Al<sup>3+</sup> ions have a little effect on the first step and very significantly influence the second one. Additionally, it was shown by TEM that after the reduction at 700 °C metallic cobalt particles were surrounded by the Al-enriched oxide shell. Apparently, that is why the addition of even a small amount of Al<sup>3+</sup> ions prevents a quick sintering of metallic cobalt observed for pure Co<sub>3</sub>O<sub>4</sub>.</p></div>\",\"PeriodicalId\":378,\"journal\":{\"name\":\"Journal of Solid State Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid State Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022459624004663\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022459624004663","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们采用共沉淀法,然后在 500 °C 煅烧,合成了未掺杂和掺 Al3+ 的 Co3O4 纳米颗粒,其铝含量各不相同(x = Al/(Co + Al) = 1/60、1/30、1/15、1/75、1/6 和 1/5)。加入 Al3+ 离子后,平均晶粒大小从 29 纳米减小到 11 纳米,比表面积从 28 平方米/克增加到 91 平方米/克。TEM 图像显示纳米颗粒呈圆形和板状。根据 HAADF-STEM 和 EDS 元素图谱,板状颗粒富含 Al3+,而圆形颗粒则缺乏 Al3+。Al3+ 在氧化物体积上的分布受氢氧化物前驱体状态的影响。XRD 显示,共沉淀仅在 Al 分数 x = 0 和 x = 1/5 时产生均质氢氧化物。对于中间成分,前驱体是 Co6(CO3)2(OH)8*H2O 和 Co0.8Al0.2(OH)2(CO3)0.1*nH2O 的混合物。在 TPR-H2 曲线上,可以发现三种(Co,Al)3O4 氧化物的还原峰,它们的 Al3+ 浓度(y)各不相同。其中 y = 0 和 y = 0.2 的两种氧化物是由不同的氢氧化物形成的,而 y ∼ 0.05 的第三种氧化物则是它们相互影响的结果。原位 XRD 使我们能够正确解释 TPR 峰,并表明所有氧化物的还原过程都是分两步进行的。第一步,Co3+ → Co2+,(Co1-yAly)3O4 氧化物转变为 (Co,Al)O。在第二步中,Co2+ → Co0,(Co,Al)O 被还原成金属钴。在未掺杂的 Co3O4 中,Co3+ → Co2+ 和 Co2+ → Co0 的还原步骤分别发生在 T1 = 280 和 T2 = 325 °C。对于贫铝 (Co1-yAly)3O4(颗粒内部 y ∼ 0.05),两个还原步骤分别在更高温度 T1 = 305 和 T2 = 405 °C 下发生。富铝(Co0.8Al0.2)3O4 的还原更为困难;第一和第二还原步骤分别发生在 T1 = 345 和 T2 = 610-690 ℃。因此,Al3+ 离子对第一步的影响很小,而对第二步的影响很大。此外,TEM 显示,在 700 °C 还原后,金属钴颗粒被富铝氧化物外壳包围。显然,这就是为什么即使添加少量 Al3+ 离子也会阻止纯 Co3O4 中金属钴的快速烧结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modification of Co3O4 by Al2O3: Influence on the reducibility

In this study, we used a coprecipitation method followed by calcination at 500 °C to synthesize undoped and Al3+-doped Co3O4 nanoparticles with different aluminum fractions (x = Al/(Co + Al) = 1/60, 1/30, 1/15, 1/75, 1/6 and 1/5). An addition of Al3+ ions led to a decrease in the average crystallite size from 29 to 11 nm, and growth of the specific surface area from 28 to 91 m2/g. TEM images indicated round and platelet shapes of the nanoparticles. According to HAADF-STEM combined with EDS elemental mapping, the platelet shape particles are Al3+-enriched, while the round shape particles are Al3+-depleted. The origin of Al3+ distribution over the oxide volume is conditioned by the state of the hydroxide precursor. It was shown by XRD that the coprecipitation yielded homogeneous hydroxides only for Al fractions x = 0 and x = 1/5. For the intermediate compositions, the precursors represent a mixture of Co6(CO3)2(OH)8*H2O and Co0.8Al0.2(OH)2(CO3)0.1*nH2O. On the TPR-H2 profiles, reduction peaks for three (Co,Al)3O4 oxides differing in the Al3+ concentration (y) can be found. Two of these oxides with y = 0 and y = 0.2 are formed from different hydroxides, and third one with y ∼0.05 is the result of their mutual interaction. In situ XRD allowed us to interpret the TPR peaks correctly and showed that the reduction of all the oxides occurs in two steps. In the first step, Co3+ → Co2+, and (Co1-yAly)3O4 oxides transform to (Co,Al)O. In the second step, Co2+ → Co0, and (Co,Al)O is reduced into metallic cobalt. In undoped Co3O4, Co3+ → Co2+ and Co2+ → Co0 reduction steps occur at T1 = 280 and T2 = 325 °C, respectively. For Al-depleted (Co1-yAly)3O4 (y ∼ 0.05 in the interior of particles), both reduction steps shift toward higher temperatures T1 = 305 and T2 = 405 °C, respectively. The reduction of Al-enriched (Co0.8Al0.2)3O4 is more difficult; first and second reduction steps occur at T1 = 345 and T2 = 610−690 °C. Therefore, Al3+ ions have a little effect on the first step and very significantly influence the second one. Additionally, it was shown by TEM that after the reduction at 700 °C metallic cobalt particles were surrounded by the Al-enriched oxide shell. Apparently, that is why the addition of even a small amount of Al3+ ions prevents a quick sintering of metallic cobalt observed for pure Co3O4.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Solid State Chemistry
Journal of Solid State Chemistry 化学-无机化学与核化学
CiteScore
6.00
自引率
9.10%
发文量
848
审稿时长
25 days
期刊介绍: Covering major developments in the field of solid state chemistry and related areas such as ceramics and amorphous materials, the Journal of Solid State Chemistry features studies of chemical, structural, thermodynamic, electronic, magnetic, and optical properties and processes in solids.
期刊最新文献
Structural features of the products based on potassium polytitanate modified in aqueous solutions of ferric sulfate The role of crystallographic orientation on surface properties and ion transport in lithium germanate (Li2GeO3) anodes: A computational approach Stability under electron irradiation of some layered hydrated minerals Synthesis of spherical amorphous metal‒organic frameworks via an in situ hydrolysis strategy for chiral HPLC separation A fluorinated star-shaped covalent organic framework for efficient iodine adsorption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1