{"title":"水热疲劳对大麻增强生物复合材料机械性能和损伤机理的影响以及与玻璃纤维增强复合材料的比较","authors":"Quentin Drouhet, Fabienne Touchard, Laurence Chocinski-Arnault","doi":"10.1177/10567895241280375","DOIUrl":null,"url":null,"abstract":"The aim of this work was to evaluate the tensile properties and the damage mechanisms of hemp and glass-reinforced composites when they were subjected to hydrothermal fatigue. Each wet/dry cycle consisted in immersing samples in water at 60°C during 12 days and drying them in an oven at 40°C during 2 days. Three different matrices (Epolam, Greenpoxy and Elium) were studied with two reinforcement orientations (±45° and 0°/90°). Gravimetric measurements were performed during 30 wet/dry cycles to determine the evolution of the parameters of the Fick diffusion model. Repeated progressive tensile loading tests instrumented with an acoustic emission setup were also carried out. Damage was investigated by means of SEM and micro-CT. Results showed that hydrothermal fatigue affects significantly the tensile properties of all the composites studied. Hemp/Greenpoxy appears to better resist to hydrothermal fatigue while the hemp/Elium behavior is more impacted. Moreover, contrary to what might be expected, glass/Epolam samples are not the least sensitive to hydrothermal fatigue.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"74 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of hydrothermal fatigue on mechanical properties and damage mechanisms of hemp-reinforced biocomposites and comparison with glass-reinforced composites\",\"authors\":\"Quentin Drouhet, Fabienne Touchard, Laurence Chocinski-Arnault\",\"doi\":\"10.1177/10567895241280375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work was to evaluate the tensile properties and the damage mechanisms of hemp and glass-reinforced composites when they were subjected to hydrothermal fatigue. Each wet/dry cycle consisted in immersing samples in water at 60°C during 12 days and drying them in an oven at 40°C during 2 days. Three different matrices (Epolam, Greenpoxy and Elium) were studied with two reinforcement orientations (±45° and 0°/90°). Gravimetric measurements were performed during 30 wet/dry cycles to determine the evolution of the parameters of the Fick diffusion model. Repeated progressive tensile loading tests instrumented with an acoustic emission setup were also carried out. Damage was investigated by means of SEM and micro-CT. Results showed that hydrothermal fatigue affects significantly the tensile properties of all the composites studied. Hemp/Greenpoxy appears to better resist to hydrothermal fatigue while the hemp/Elium behavior is more impacted. Moreover, contrary to what might be expected, glass/Epolam samples are not the least sensitive to hydrothermal fatigue.\",\"PeriodicalId\":13837,\"journal\":{\"name\":\"International Journal of Damage Mechanics\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Damage Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/10567895241280375\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Damage Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10567895241280375","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Influence of hydrothermal fatigue on mechanical properties and damage mechanisms of hemp-reinforced biocomposites and comparison with glass-reinforced composites
The aim of this work was to evaluate the tensile properties and the damage mechanisms of hemp and glass-reinforced composites when they were subjected to hydrothermal fatigue. Each wet/dry cycle consisted in immersing samples in water at 60°C during 12 days and drying them in an oven at 40°C during 2 days. Three different matrices (Epolam, Greenpoxy and Elium) were studied with two reinforcement orientations (±45° and 0°/90°). Gravimetric measurements were performed during 30 wet/dry cycles to determine the evolution of the parameters of the Fick diffusion model. Repeated progressive tensile loading tests instrumented with an acoustic emission setup were also carried out. Damage was investigated by means of SEM and micro-CT. Results showed that hydrothermal fatigue affects significantly the tensile properties of all the composites studied. Hemp/Greenpoxy appears to better resist to hydrothermal fatigue while the hemp/Elium behavior is more impacted. Moreover, contrary to what might be expected, glass/Epolam samples are not the least sensitive to hydrothermal fatigue.
期刊介绍:
Featuring original, peer-reviewed papers by leading specialists from around the world, the International Journal of Damage Mechanics covers new developments in the science and engineering of fracture and damage mechanics.
Devoted to the prompt publication of original papers reporting the results of experimental or theoretical work on any aspect of research in the mechanics of fracture and damage assessment, the journal provides an effective mechanism to disseminate information not only within the research community but also between the reseach laboratory and industrial design department.
The journal also promotes and contributes to development of the concept of damage mechanics. This journal is a member of the Committee on Publication Ethics (COPE).