Xinyu Tong , Min Zhu , Jijie Li , Qunnan Qiu , Yongjie Feng , Xiaolong Hu , Chengliang Gong
{"title":"通过重组 AcMNPV 在家蚕中表达全长的克氏毛蛛主要安瓿鞘氨醇基因,改善嵌合蚕丝的机械性能","authors":"Xinyu Tong , Min Zhu , Jijie Li , Qunnan Qiu , Yongjie Feng , Xiaolong Hu , Chengliang Gong","doi":"10.1016/j.jmbbm.2024.106742","DOIUrl":null,"url":null,"abstract":"<div><p>Spider silk is a type of natural protein fiber with excellent toughness and tensile strength. The mechanical properties of chimeric silk have been improved by integrating the spider silk protein gene into the silkworm (<em>Bombyx mori)</em> genome, but this strategy requires a long time to produce genetically modified silkworms. In this study, to rapidly produce chimeric silkworms/spider silk with improved toughness and tensile strength, recombinant <em>Autographa californica</em> multiple nucleopolyhedrovirus (AcMNPV), AcMNPV-FHP-MaSp-G, harboring a full-length <em>Trichonephila clavipes</em> major ampullate spidroin G (MaSp-G) gene driven by the silkworm fibroin heavy chain (<em>Fib</em>-H) promoter, was constructed, in which the signal peptide sequence of the MaSp-G gene was replaced by the signal peptide sequence of the <em>Fib</em>-H gene. Western blot and LC–MS/MS results showed that MaSp-G was successfully expressed in the posterior silk gland of silkworm larvae infected with AcMNPV-FHP-MaSp-G and secreted into the cocoon. Mechanical property tests revealed that the average maximum breaking stress and the average maximum elastic strain of chimeric silkworms/spider silk were 497.867 MPa and 14.824%, respectively, which were 36.53% and 23.55% greater than those of silk produced by normal silkworms. Fourier transform infrared (FTIR) spectroscopy revealed that the proportions of β-sheets, α-helices, and β-turns in the chimeric silk increased by 18.22%, 16.92%, and 18.72%, respectively. These results indicate that the mechanical properties of the chimeric silk produced by silkworms infected with AcMNPV-FHP-MaSp-G were significantly improved, which provides a new method for rapid production of chimeric silk in a genetically modified/genome-edited silkworm-independent manner.</p></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"160 ","pages":"Article 106742"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The mechanical properties of chimeric silk are improved by expressing the full-length Trichonephila clavipes major ampullate spidroin gene in the silkworm Bombyx mori via recombinant AcMNPV\",\"authors\":\"Xinyu Tong , Min Zhu , Jijie Li , Qunnan Qiu , Yongjie Feng , Xiaolong Hu , Chengliang Gong\",\"doi\":\"10.1016/j.jmbbm.2024.106742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Spider silk is a type of natural protein fiber with excellent toughness and tensile strength. The mechanical properties of chimeric silk have been improved by integrating the spider silk protein gene into the silkworm (<em>Bombyx mori)</em> genome, but this strategy requires a long time to produce genetically modified silkworms. In this study, to rapidly produce chimeric silkworms/spider silk with improved toughness and tensile strength, recombinant <em>Autographa californica</em> multiple nucleopolyhedrovirus (AcMNPV), AcMNPV-FHP-MaSp-G, harboring a full-length <em>Trichonephila clavipes</em> major ampullate spidroin G (MaSp-G) gene driven by the silkworm fibroin heavy chain (<em>Fib</em>-H) promoter, was constructed, in which the signal peptide sequence of the MaSp-G gene was replaced by the signal peptide sequence of the <em>Fib</em>-H gene. Western blot and LC–MS/MS results showed that MaSp-G was successfully expressed in the posterior silk gland of silkworm larvae infected with AcMNPV-FHP-MaSp-G and secreted into the cocoon. Mechanical property tests revealed that the average maximum breaking stress and the average maximum elastic strain of chimeric silkworms/spider silk were 497.867 MPa and 14.824%, respectively, which were 36.53% and 23.55% greater than those of silk produced by normal silkworms. Fourier transform infrared (FTIR) spectroscopy revealed that the proportions of β-sheets, α-helices, and β-turns in the chimeric silk increased by 18.22%, 16.92%, and 18.72%, respectively. These results indicate that the mechanical properties of the chimeric silk produced by silkworms infected with AcMNPV-FHP-MaSp-G were significantly improved, which provides a new method for rapid production of chimeric silk in a genetically modified/genome-edited silkworm-independent manner.</p></div>\",\"PeriodicalId\":380,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"volume\":\"160 \",\"pages\":\"Article 106742\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751616124003746\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616124003746","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
The mechanical properties of chimeric silk are improved by expressing the full-length Trichonephila clavipes major ampullate spidroin gene in the silkworm Bombyx mori via recombinant AcMNPV
Spider silk is a type of natural protein fiber with excellent toughness and tensile strength. The mechanical properties of chimeric silk have been improved by integrating the spider silk protein gene into the silkworm (Bombyx mori) genome, but this strategy requires a long time to produce genetically modified silkworms. In this study, to rapidly produce chimeric silkworms/spider silk with improved toughness and tensile strength, recombinant Autographa californica multiple nucleopolyhedrovirus (AcMNPV), AcMNPV-FHP-MaSp-G, harboring a full-length Trichonephila clavipes major ampullate spidroin G (MaSp-G) gene driven by the silkworm fibroin heavy chain (Fib-H) promoter, was constructed, in which the signal peptide sequence of the MaSp-G gene was replaced by the signal peptide sequence of the Fib-H gene. Western blot and LC–MS/MS results showed that MaSp-G was successfully expressed in the posterior silk gland of silkworm larvae infected with AcMNPV-FHP-MaSp-G and secreted into the cocoon. Mechanical property tests revealed that the average maximum breaking stress and the average maximum elastic strain of chimeric silkworms/spider silk were 497.867 MPa and 14.824%, respectively, which were 36.53% and 23.55% greater than those of silk produced by normal silkworms. Fourier transform infrared (FTIR) spectroscopy revealed that the proportions of β-sheets, α-helices, and β-turns in the chimeric silk increased by 18.22%, 16.92%, and 18.72%, respectively. These results indicate that the mechanical properties of the chimeric silk produced by silkworms infected with AcMNPV-FHP-MaSp-G were significantly improved, which provides a new method for rapid production of chimeric silk in a genetically modified/genome-edited silkworm-independent manner.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.