{"title":"再现一维连续体色散的积分微观模型","authors":"Michal Šmejkal , Milan Jirásek , Martin Horák","doi":"10.1016/j.ijengsci.2024.104147","DOIUrl":null,"url":null,"abstract":"<div><p>The paper develops a new integral micromorphic elastic continuum model, which can describe dispersion properties of band-gap metamaterials, i.e., metamaterials that inhibit propagation of waves in a certain frequency range. The enrichment consists in nonlocal treatment of three terms in the expression for the potential energy density of the standard micromorphic continuum. After proper calibration, such a formulation can <strong>exactly</strong> reproduce two given branches of the dispersion curve (acoustic and optical), even in cases with a band gap. The calibration process exploits Fourier images of the unknown weight functions, which are analytically deduced from the dispersion relation of the material of interest. The weight functions are then reconstructed in the spatial domain by numerical evaluation of the inverse Fourier transform. The presented approach is validated on several examples, including discrete mass–spring chains with alternating masses, for which the dispersion relation has an explicit analytical form and the optical and acoustic branches are separated by a band gap.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"205 ","pages":"Article 104147"},"PeriodicalIF":5.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integral micromorphic model reproducing dispersion in 1D continuum\",\"authors\":\"Michal Šmejkal , Milan Jirásek , Martin Horák\",\"doi\":\"10.1016/j.ijengsci.2024.104147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper develops a new integral micromorphic elastic continuum model, which can describe dispersion properties of band-gap metamaterials, i.e., metamaterials that inhibit propagation of waves in a certain frequency range. The enrichment consists in nonlocal treatment of three terms in the expression for the potential energy density of the standard micromorphic continuum. After proper calibration, such a formulation can <strong>exactly</strong> reproduce two given branches of the dispersion curve (acoustic and optical), even in cases with a band gap. The calibration process exploits Fourier images of the unknown weight functions, which are analytically deduced from the dispersion relation of the material of interest. The weight functions are then reconstructed in the spatial domain by numerical evaluation of the inverse Fourier transform. The presented approach is validated on several examples, including discrete mass–spring chains with alternating masses, for which the dispersion relation has an explicit analytical form and the optical and acoustic branches are separated by a band gap.</p></div>\",\"PeriodicalId\":14053,\"journal\":{\"name\":\"International Journal of Engineering Science\",\"volume\":\"205 \",\"pages\":\"Article 104147\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020722524001319\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722524001319","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Integral micromorphic model reproducing dispersion in 1D continuum
The paper develops a new integral micromorphic elastic continuum model, which can describe dispersion properties of band-gap metamaterials, i.e., metamaterials that inhibit propagation of waves in a certain frequency range. The enrichment consists in nonlocal treatment of three terms in the expression for the potential energy density of the standard micromorphic continuum. After proper calibration, such a formulation can exactly reproduce two given branches of the dispersion curve (acoustic and optical), even in cases with a band gap. The calibration process exploits Fourier images of the unknown weight functions, which are analytically deduced from the dispersion relation of the material of interest. The weight functions are then reconstructed in the spatial domain by numerical evaluation of the inverse Fourier transform. The presented approach is validated on several examples, including discrete mass–spring chains with alternating masses, for which the dispersion relation has an explicit analytical form and the optical and acoustic branches are separated by a band gap.
期刊介绍:
The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome.
The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process.
Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.