Scott Stanslaski, Rebekah L. S. Summers, Lisa Tonder, Ye Tan, Michelle Case, Robert S. Raike, Nathan Morelli, Todd M. Herrington, Martijn Beudel, Jill L. Ostrem, Simon Little, Leonardo Almeida, Adolfo Ramirez-Zamora, Alfonso Fasano, Travis Hassell, Kyle T. Mitchell, Elena Moro, Michal Gostkowski, Nagaraja Sarangmat, Helen Bronte-Stewart
{"title":"帕金森病个性化治疗自适应 DBS 算法(ADAPT-PD)临床试验的传感数据和方法论","authors":"Scott Stanslaski, Rebekah L. S. Summers, Lisa Tonder, Ye Tan, Michelle Case, Robert S. Raike, Nathan Morelli, Todd M. Herrington, Martijn Beudel, Jill L. Ostrem, Simon Little, Leonardo Almeida, Adolfo Ramirez-Zamora, Alfonso Fasano, Travis Hassell, Kyle T. Mitchell, Elena Moro, Michal Gostkowski, Nagaraja Sarangmat, Helen Bronte-Stewart","doi":"10.1038/s41531-024-00772-5","DOIUrl":null,"url":null,"abstract":"<p>Adaptive deep brain stimulation (aDBS) is an emerging advancement in DBS technology; however, local field potential (LFP) signal rate detection sufficient for aDBS algorithms and the methods to set-up aDBS have yet to be defined. Here we summarize sensing data and aDBS programming steps associated with the ongoing Adaptive DBS Algorithm for Personalized Therapy in Parkinson’s Disease (ADAPT-PD) pivotal trial (NCT04547712). Sixty-eight patients were enrolled with either subthalamic nucleus or globus pallidus internus DBS leads connected to a Medtronic Percept<sup>TM</sup> PC neurostimulator. During the enrollment and screening procedures, a LFP (8–30 Hz, ≥1.2 µVp) control signal was identified by clinicians in 84.8% of patients on medication (65% bilateral signal), and in 92% of patients off medication (78% bilateral signal). The ADAPT-PD trial sensing data indicate a high LFP signal presence in both on and off medication states of these patients, with bilateral signal in the majority, regardless of PD phenotype.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensing data and methodology from the Adaptive DBS Algorithm for Personalized Therapy in Parkinson’s Disease (ADAPT-PD) clinical trial\",\"authors\":\"Scott Stanslaski, Rebekah L. S. Summers, Lisa Tonder, Ye Tan, Michelle Case, Robert S. Raike, Nathan Morelli, Todd M. Herrington, Martijn Beudel, Jill L. Ostrem, Simon Little, Leonardo Almeida, Adolfo Ramirez-Zamora, Alfonso Fasano, Travis Hassell, Kyle T. Mitchell, Elena Moro, Michal Gostkowski, Nagaraja Sarangmat, Helen Bronte-Stewart\",\"doi\":\"10.1038/s41531-024-00772-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Adaptive deep brain stimulation (aDBS) is an emerging advancement in DBS technology; however, local field potential (LFP) signal rate detection sufficient for aDBS algorithms and the methods to set-up aDBS have yet to be defined. Here we summarize sensing data and aDBS programming steps associated with the ongoing Adaptive DBS Algorithm for Personalized Therapy in Parkinson’s Disease (ADAPT-PD) pivotal trial (NCT04547712). Sixty-eight patients were enrolled with either subthalamic nucleus or globus pallidus internus DBS leads connected to a Medtronic Percept<sup>TM</sup> PC neurostimulator. During the enrollment and screening procedures, a LFP (8–30 Hz, ≥1.2 µVp) control signal was identified by clinicians in 84.8% of patients on medication (65% bilateral signal), and in 92% of patients off medication (78% bilateral signal). The ADAPT-PD trial sensing data indicate a high LFP signal presence in both on and off medication states of these patients, with bilateral signal in the majority, regardless of PD phenotype.</p>\",\"PeriodicalId\":19706,\"journal\":{\"name\":\"NPJ Parkinson's Disease\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Parkinson's Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41531-024-00772-5\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Parkinson's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41531-024-00772-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Sensing data and methodology from the Adaptive DBS Algorithm for Personalized Therapy in Parkinson’s Disease (ADAPT-PD) clinical trial
Adaptive deep brain stimulation (aDBS) is an emerging advancement in DBS technology; however, local field potential (LFP) signal rate detection sufficient for aDBS algorithms and the methods to set-up aDBS have yet to be defined. Here we summarize sensing data and aDBS programming steps associated with the ongoing Adaptive DBS Algorithm for Personalized Therapy in Parkinson’s Disease (ADAPT-PD) pivotal trial (NCT04547712). Sixty-eight patients were enrolled with either subthalamic nucleus or globus pallidus internus DBS leads connected to a Medtronic PerceptTM PC neurostimulator. During the enrollment and screening procedures, a LFP (8–30 Hz, ≥1.2 µVp) control signal was identified by clinicians in 84.8% of patients on medication (65% bilateral signal), and in 92% of patients off medication (78% bilateral signal). The ADAPT-PD trial sensing data indicate a high LFP signal presence in both on and off medication states of these patients, with bilateral signal in the majority, regardless of PD phenotype.
期刊介绍:
npj Parkinson's Disease is a comprehensive open access journal that covers a wide range of research areas related to Parkinson's disease. It publishes original studies in basic science, translational research, and clinical investigations. The journal is dedicated to advancing our understanding of Parkinson's disease by exploring various aspects such as anatomy, etiology, genetics, cellular and molecular physiology, neurophysiology, epidemiology, and therapeutic development. By providing free and immediate access to the scientific and Parkinson's disease community, npj Parkinson's Disease promotes collaboration and knowledge sharing among researchers and healthcare professionals.