球体间的格罗莫夫-瓦瑟施泰因距离

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-09-16 DOI:10.1007/s10208-024-09678-3
Shreya Arya, Arnab Auddy, Ranthony A. Clark, Sunhyuk Lim, Facundo Mémoli, Daniel Packer
{"title":"球体间的格罗莫夫-瓦瑟施泰因距离","authors":"Shreya Arya, Arnab Auddy, Ranthony A. Clark, Sunhyuk Lim, Facundo Mémoli, Daniel Packer","doi":"10.1007/s10208-024-09678-3","DOIUrl":null,"url":null,"abstract":"<p>The Gromov–Wasserstein distance—a generalization of the usual Wasserstein distance—permits comparing probability measures defined on possibly different metric spaces. Recently, this notion of distance has found several applications in Data Science and in Machine Learning. With the goal of aiding both the interpretability of dissimilarity measures computed through the Gromov–Wasserstein distance and the assessment of the approximation quality of computational techniques designed to estimate the Gromov–Wasserstein distance, we determine the precise value of a certain variant of the Gromov–Wasserstein distance between unit spheres of different dimensions. Indeed, we consider a two-parameter family <span>\\(\\{d_{{{\\text {GW}}}p,q}\\}_{p,q=1}^{\\infty }\\)</span> of Gromov–Wasserstein distances between metric measure spaces. By exploiting a suitable interaction between specific values of the parameters <i>p</i> and <i>q</i> and the metric of the underlying spaces, we are able to determine the exact value of the distance <span>\\(d_{{{\\text {GW}}}4,2}\\)</span> between all pairs of unit spheres of different dimensions endowed with their Euclidean distance and their uniform measure.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Gromov–Wasserstein Distance Between Spheres\",\"authors\":\"Shreya Arya, Arnab Auddy, Ranthony A. Clark, Sunhyuk Lim, Facundo Mémoli, Daniel Packer\",\"doi\":\"10.1007/s10208-024-09678-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Gromov–Wasserstein distance—a generalization of the usual Wasserstein distance—permits comparing probability measures defined on possibly different metric spaces. Recently, this notion of distance has found several applications in Data Science and in Machine Learning. With the goal of aiding both the interpretability of dissimilarity measures computed through the Gromov–Wasserstein distance and the assessment of the approximation quality of computational techniques designed to estimate the Gromov–Wasserstein distance, we determine the precise value of a certain variant of the Gromov–Wasserstein distance between unit spheres of different dimensions. Indeed, we consider a two-parameter family <span>\\\\(\\\\{d_{{{\\\\text {GW}}}p,q}\\\\}_{p,q=1}^{\\\\infty }\\\\)</span> of Gromov–Wasserstein distances between metric measure spaces. By exploiting a suitable interaction between specific values of the parameters <i>p</i> and <i>q</i> and the metric of the underlying spaces, we are able to determine the exact value of the distance <span>\\\\(d_{{{\\\\text {GW}}}4,2}\\\\)</span> between all pairs of unit spheres of different dimensions endowed with their Euclidean distance and their uniform measure.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10208-024-09678-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-024-09678-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

格罗莫夫-瓦瑟斯坦距离--通常的瓦瑟斯坦距离的广义化--允许比较定义在可能不同的度量空间上的概率度量。最近,这一距离概念在数据科学和机器学习中得到了广泛应用。为了帮助解释通过格罗莫夫-瓦瑟斯坦距离计算出的不相似度量,并评估旨在估算格罗莫夫-瓦瑟斯坦距离的计算技术的近似质量,我们确定了不同维度的单位球之间格罗莫夫-瓦瑟斯坦距离的某个变体的精确值。事实上,我们考虑的是度量空间之间的格罗莫夫-瓦瑟斯坦距离的双参数族((\{d_{{text {GW}}}p,q}\}_{p,q=1}^{\infty }\ )。通过利用参数 p 和 q 的特定值与底层空间度量之间的相互作用,我们能够确定所有不同维度的单位球之间的距离 \(d_{{text{GW}}4,2}\)的精确值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Gromov–Wasserstein Distance Between Spheres

The Gromov–Wasserstein distance—a generalization of the usual Wasserstein distance—permits comparing probability measures defined on possibly different metric spaces. Recently, this notion of distance has found several applications in Data Science and in Machine Learning. With the goal of aiding both the interpretability of dissimilarity measures computed through the Gromov–Wasserstein distance and the assessment of the approximation quality of computational techniques designed to estimate the Gromov–Wasserstein distance, we determine the precise value of a certain variant of the Gromov–Wasserstein distance between unit spheres of different dimensions. Indeed, we consider a two-parameter family \(\{d_{{{\text {GW}}}p,q}\}_{p,q=1}^{\infty }\) of Gromov–Wasserstein distances between metric measure spaces. By exploiting a suitable interaction between specific values of the parameters p and q and the metric of the underlying spaces, we are able to determine the exact value of the distance \(d_{{{\text {GW}}}4,2}\) between all pairs of unit spheres of different dimensions endowed with their Euclidean distance and their uniform measure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1