{"title":"丰富的冰壳暗示了谷神星上古老而不纯净的冰冻海洋","authors":"I. F. Pamerleau, M. M. Sori, J. E. C. Scully","doi":"10.1038/s41550-024-02350-4","DOIUrl":null,"url":null,"abstract":"Ceres is a key object in understanding the evolution of small bodies and is the only dwarf planet to have been orbited by a spacecraft, NASA’s Dawn mission. Dawn data paint an inconclusive picture of Ceres’ internal structure, composition and evolutionary pathway: crater morphology and gravity inversions suggest an ice-rich interior, while a lack of extensive crater relaxation argues for low ice content. Here we resolve this discrepancy by applying an ice rheology that includes effects of impurities on grain boundary sliding to finite element method simulations of Cerean craters. We show that Ceres can maintain its cratered topography while also having an ice-rich crust. Our simulations show that a crust with ~90% ice near the surface, which gradually decreases to 0% at 117 km depth, simultaneously matches the observed lack of crater relaxation, observed crater morphology and gravity inversions. This crustal structure results from a frozen ocean that became more impurity rich as it solidified top-down. Therefore, the Dawn data are consistent with an icy Ceres that evolved through freezing of an ancient, impure ocean. An ice-rich crust with increasing silicate content with depth is consistent with Ceres’ crater morphology, lack of crater relaxation and gravity inversions. This structure has a higher ice content than previously expected and could form from a relic ocean.","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"8 11","pages":"1373-1379"},"PeriodicalIF":12.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41550-024-02350-4.pdf","citationCount":"0","resultStr":"{\"title\":\"An ancient and impure frozen ocean on Ceres implied by its ice-rich crust\",\"authors\":\"I. F. Pamerleau, M. M. Sori, J. E. C. Scully\",\"doi\":\"10.1038/s41550-024-02350-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ceres is a key object in understanding the evolution of small bodies and is the only dwarf planet to have been orbited by a spacecraft, NASA’s Dawn mission. Dawn data paint an inconclusive picture of Ceres’ internal structure, composition and evolutionary pathway: crater morphology and gravity inversions suggest an ice-rich interior, while a lack of extensive crater relaxation argues for low ice content. Here we resolve this discrepancy by applying an ice rheology that includes effects of impurities on grain boundary sliding to finite element method simulations of Cerean craters. We show that Ceres can maintain its cratered topography while also having an ice-rich crust. Our simulations show that a crust with ~90% ice near the surface, which gradually decreases to 0% at 117 km depth, simultaneously matches the observed lack of crater relaxation, observed crater morphology and gravity inversions. This crustal structure results from a frozen ocean that became more impurity rich as it solidified top-down. Therefore, the Dawn data are consistent with an icy Ceres that evolved through freezing of an ancient, impure ocean. An ice-rich crust with increasing silicate content with depth is consistent with Ceres’ crater morphology, lack of crater relaxation and gravity inversions. This structure has a higher ice content than previously expected and could form from a relic ocean.\",\"PeriodicalId\":18778,\"journal\":{\"name\":\"Nature Astronomy\",\"volume\":\"8 11\",\"pages\":\"1373-1379\"},\"PeriodicalIF\":12.9000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41550-024-02350-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s41550-024-02350-4\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Astronomy","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41550-024-02350-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
An ancient and impure frozen ocean on Ceres implied by its ice-rich crust
Ceres is a key object in understanding the evolution of small bodies and is the only dwarf planet to have been orbited by a spacecraft, NASA’s Dawn mission. Dawn data paint an inconclusive picture of Ceres’ internal structure, composition and evolutionary pathway: crater morphology and gravity inversions suggest an ice-rich interior, while a lack of extensive crater relaxation argues for low ice content. Here we resolve this discrepancy by applying an ice rheology that includes effects of impurities on grain boundary sliding to finite element method simulations of Cerean craters. We show that Ceres can maintain its cratered topography while also having an ice-rich crust. Our simulations show that a crust with ~90% ice near the surface, which gradually decreases to 0% at 117 km depth, simultaneously matches the observed lack of crater relaxation, observed crater morphology and gravity inversions. This crustal structure results from a frozen ocean that became more impurity rich as it solidified top-down. Therefore, the Dawn data are consistent with an icy Ceres that evolved through freezing of an ancient, impure ocean. An ice-rich crust with increasing silicate content with depth is consistent with Ceres’ crater morphology, lack of crater relaxation and gravity inversions. This structure has a higher ice content than previously expected and could form from a relic ocean.
Nature AstronomyPhysics and Astronomy-Astronomy and Astrophysics
CiteScore
19.50
自引率
2.80%
发文量
252
期刊介绍:
Nature Astronomy, the oldest science, has played a significant role in the history of Nature. Throughout the years, pioneering discoveries such as the first quasar, exoplanet, and understanding of spiral nebulae have been reported in the journal. With the introduction of Nature Astronomy, the field now receives expanded coverage, welcoming research in astronomy, astrophysics, and planetary science. The primary objective is to encourage closer collaboration among researchers in these related areas.
Similar to other journals under the Nature brand, Nature Astronomy boasts a devoted team of professional editors, ensuring fairness and rigorous peer-review processes. The journal maintains high standards in copy-editing and production, ensuring timely publication and editorial independence.
In addition to original research, Nature Astronomy publishes a wide range of content, including Comments, Reviews, News and Views, Features, and Correspondence. This diverse collection covers various disciplines within astronomy and includes contributions from a diverse range of voices.