用于高相互耦合条件下到达方向估计的权重约束稀疏阵列

IF 4.6 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Signal Processing Pub Date : 2024-09-17 DOI:10.1109/TSP.2024.3461720
Pranav Kulkarni;P. P. Vaidyanathan
{"title":"用于高相互耦合条件下到达方向估计的权重约束稀疏阵列","authors":"Pranav Kulkarni;P. P. Vaidyanathan","doi":"10.1109/TSP.2024.3461720","DOIUrl":null,"url":null,"abstract":"In recent years, following the development of nested arrays and coprime arrays, several improved array constructions have been proposed to identify \n<inline-formula><tex-math>$\\mathcal{O}(N^{2})$</tex-math></inline-formula>\n directions with \n<inline-formula><tex-math>$N$</tex-math></inline-formula>\n sensors and to reduce the impact of mutual coupling on the direction of arrival (DOA) estimation. However, having \n<inline-formula><tex-math>$\\mathcal{O}(N^{2})$</tex-math></inline-formula>\n degrees of freedom may not be of interest, especially for large \n<inline-formula><tex-math>$N$</tex-math></inline-formula>\n. Also, a large aperture of such arrays may not be suitable when limited space is available to place the sensors. This paper presents two types of sparse array designs that can effectively handle high mutual coupling by ensuring that the coarray weights satisfy either \n<inline-formula><tex-math>$w(1)=0$</tex-math></inline-formula>\n or \n<inline-formula><tex-math>$w(1)=w(2)=0$</tex-math></inline-formula>\n, where \n<inline-formula><tex-math>$w(l)$</tex-math></inline-formula>\n is the number of occurrences of the difference \n<inline-formula><tex-math>$l$</tex-math></inline-formula>\n in the set \n<inline-formula><tex-math>$\\{n_{i}-n_{j}\\}_{i,j=1}^{N}$</tex-math></inline-formula>\n, and \n<inline-formula><tex-math>$n_{i}$</tex-math></inline-formula>\n are sensors locations. In addition, several other coarray weights are small constants that do not increase with the number of sensors \n<inline-formula><tex-math>$N$</tex-math></inline-formula>\n. The arrays of the first type have an aperture of \n<inline-formula><tex-math>$\\mathcal{O}(N)$</tex-math></inline-formula>\n length, making them suitable when the available aperture is restricted and the number of DOAs is also \n<inline-formula><tex-math>$\\mathcal{O}(N)$</tex-math></inline-formula>\n. These arrays are constructed by appropriately dilating a uniform linear array (ULA) and augmenting a few additional sensors. Despite having an aperture of \n<inline-formula><tex-math>$\\mathcal{O}(N)$</tex-math></inline-formula>\n length, these arrays can still identify more than \n<inline-formula><tex-math>$N$</tex-math></inline-formula>\n DOAs. The arrays of the second type have \n<inline-formula><tex-math>$\\mathcal{O}(N^{2})$</tex-math></inline-formula>\n degrees of freedom and are suitable when the aperture is not restricted. These arrays are constructed by appropriately dilating a nested array and augmenting it with several additional sensors. We compare the proposed arrays with those in the literature by analyzing their coarray properties and conducting several Monte-Carlo simulations. Unlike ULA and nested array, any sensor pair in the proposed arrays has a spacing of at least 2 units, because of the coarray hole at lag 1. In the presence of high mutual coupling, the proposed arrays can estimate DOAs with significantly smaller errors when compared to other arrays because of the reduction of coarray weight at critical small-valued lags.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"72 ","pages":"4444-4462"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weight-Constrained Sparse Arrays For Direction of Arrival Estimation Under High Mutual Coupling\",\"authors\":\"Pranav Kulkarni;P. P. Vaidyanathan\",\"doi\":\"10.1109/TSP.2024.3461720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, following the development of nested arrays and coprime arrays, several improved array constructions have been proposed to identify \\n<inline-formula><tex-math>$\\\\mathcal{O}(N^{2})$</tex-math></inline-formula>\\n directions with \\n<inline-formula><tex-math>$N$</tex-math></inline-formula>\\n sensors and to reduce the impact of mutual coupling on the direction of arrival (DOA) estimation. However, having \\n<inline-formula><tex-math>$\\\\mathcal{O}(N^{2})$</tex-math></inline-formula>\\n degrees of freedom may not be of interest, especially for large \\n<inline-formula><tex-math>$N$</tex-math></inline-formula>\\n. Also, a large aperture of such arrays may not be suitable when limited space is available to place the sensors. This paper presents two types of sparse array designs that can effectively handle high mutual coupling by ensuring that the coarray weights satisfy either \\n<inline-formula><tex-math>$w(1)=0$</tex-math></inline-formula>\\n or \\n<inline-formula><tex-math>$w(1)=w(2)=0$</tex-math></inline-formula>\\n, where \\n<inline-formula><tex-math>$w(l)$</tex-math></inline-formula>\\n is the number of occurrences of the difference \\n<inline-formula><tex-math>$l$</tex-math></inline-formula>\\n in the set \\n<inline-formula><tex-math>$\\\\{n_{i}-n_{j}\\\\}_{i,j=1}^{N}$</tex-math></inline-formula>\\n, and \\n<inline-formula><tex-math>$n_{i}$</tex-math></inline-formula>\\n are sensors locations. In addition, several other coarray weights are small constants that do not increase with the number of sensors \\n<inline-formula><tex-math>$N$</tex-math></inline-formula>\\n. The arrays of the first type have an aperture of \\n<inline-formula><tex-math>$\\\\mathcal{O}(N)$</tex-math></inline-formula>\\n length, making them suitable when the available aperture is restricted and the number of DOAs is also \\n<inline-formula><tex-math>$\\\\mathcal{O}(N)$</tex-math></inline-formula>\\n. These arrays are constructed by appropriately dilating a uniform linear array (ULA) and augmenting a few additional sensors. Despite having an aperture of \\n<inline-formula><tex-math>$\\\\mathcal{O}(N)$</tex-math></inline-formula>\\n length, these arrays can still identify more than \\n<inline-formula><tex-math>$N$</tex-math></inline-formula>\\n DOAs. The arrays of the second type have \\n<inline-formula><tex-math>$\\\\mathcal{O}(N^{2})$</tex-math></inline-formula>\\n degrees of freedom and are suitable when the aperture is not restricted. These arrays are constructed by appropriately dilating a nested array and augmenting it with several additional sensors. We compare the proposed arrays with those in the literature by analyzing their coarray properties and conducting several Monte-Carlo simulations. Unlike ULA and nested array, any sensor pair in the proposed arrays has a spacing of at least 2 units, because of the coarray hole at lag 1. In the presence of high mutual coupling, the proposed arrays can estimate DOAs with significantly smaller errors when compared to other arrays because of the reduction of coarray weight at critical small-valued lags.\",\"PeriodicalId\":13330,\"journal\":{\"name\":\"IEEE Transactions on Signal Processing\",\"volume\":\"72 \",\"pages\":\"4444-4462\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10681310/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10681310/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

近年来,随着嵌套阵列和共轭阵列的发展,人们提出了几种改进的阵列结构,以确定具有 $N$ 传感器的 $\mathcal{O}(N^{2})$方向,并减少相互耦合对到达方向(DOA)估计的影响。然而,拥有 $\mathcal{O}(N^{2})$ 自由度可能并不令人感兴趣,尤其是在 $N$ 较大的情况下。此外,当放置传感器的空间有限时,这种阵列的大孔径可能并不合适。本文提出了两种稀疏阵列设计,通过确保共阵列权重满足 $w(1)=0$ 或 $w(1)=w(2)=0$,其中 $w(l)$ 是差值 $l$ 在集合 ${n_{i}-n_{j}\}_{i,j=1}^{N}$ 中的出现次数,而 $n_{i}$ 是传感器位置,从而有效处理高相互耦合问题。此外,其他几个共阵列的权重都是小常数,不会随着传感器数量 $N$ 的增加而增加。第一类阵列的孔径长度为 $\mathcal{O}(N)$,因此适用于可用孔径有限且 DOAs 数量也为 $\mathcal{O}(N)$的情况。这些阵列是通过适当扩张均匀线性阵列(ULA)并增加一些额外的传感器来构建的。尽管这些阵列的孔径长度为 $/mathcal{O}(N)$,但仍能识别超过 $N$ 的 DOAs。第二类阵列的自由度为 $\mathcal{O}(N^{2})$,适用于孔径不受限制的情况。这些阵列是通过对嵌套阵列进行适当扩张并增加几个额外的传感器而构建的。我们通过分析共阵列的特性和进行多次蒙特卡洛模拟,将所提出的阵列与文献中的阵列进行比较。与 ULA 和嵌套阵列不同,由于在滞后 1 处存在共阵列孔,拟议阵列中任何一对传感器的间距至少为 2 个单位。在高度相互耦合的情况下,与其他阵列相比,拟议阵列能以更小的误差估计 DOA,这是因为在临界小值滞后时,共阵列权重降低了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Weight-Constrained Sparse Arrays For Direction of Arrival Estimation Under High Mutual Coupling
In recent years, following the development of nested arrays and coprime arrays, several improved array constructions have been proposed to identify $\mathcal{O}(N^{2})$ directions with $N$ sensors and to reduce the impact of mutual coupling on the direction of arrival (DOA) estimation. However, having $\mathcal{O}(N^{2})$ degrees of freedom may not be of interest, especially for large $N$ . Also, a large aperture of such arrays may not be suitable when limited space is available to place the sensors. This paper presents two types of sparse array designs that can effectively handle high mutual coupling by ensuring that the coarray weights satisfy either $w(1)=0$ or $w(1)=w(2)=0$ , where $w(l)$ is the number of occurrences of the difference $l$ in the set $\{n_{i}-n_{j}\}_{i,j=1}^{N}$ , and $n_{i}$ are sensors locations. In addition, several other coarray weights are small constants that do not increase with the number of sensors $N$ . The arrays of the first type have an aperture of $\mathcal{O}(N)$ length, making them suitable when the available aperture is restricted and the number of DOAs is also $\mathcal{O}(N)$ . These arrays are constructed by appropriately dilating a uniform linear array (ULA) and augmenting a few additional sensors. Despite having an aperture of $\mathcal{O}(N)$ length, these arrays can still identify more than $N$ DOAs. The arrays of the second type have $\mathcal{O}(N^{2})$ degrees of freedom and are suitable when the aperture is not restricted. These arrays are constructed by appropriately dilating a nested array and augmenting it with several additional sensors. We compare the proposed arrays with those in the literature by analyzing their coarray properties and conducting several Monte-Carlo simulations. Unlike ULA and nested array, any sensor pair in the proposed arrays has a spacing of at least 2 units, because of the coarray hole at lag 1. In the presence of high mutual coupling, the proposed arrays can estimate DOAs with significantly smaller errors when compared to other arrays because of the reduction of coarray weight at critical small-valued lags.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Signal Processing
IEEE Transactions on Signal Processing 工程技术-工程:电子与电气
CiteScore
11.20
自引率
9.30%
发文量
310
审稿时长
3.0 months
期刊介绍: The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.
期刊最新文献
Low-Tubal-Rank Tensor Recovery via Factorized Gradient Descent Data-Driven Quickest Change Detection in (Hidden) Markov Models Simplicial Vector Autoregressive Models A Directional Generation Algorithm for SAR Image based on Azimuth-Guided Statistical Generative Adversarial Network Structured Directional Pruning via Perturbation Orthogonal Projection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1